Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Porceddu is active.

Publication


Featured researches published by Andrea Porceddu.


The Plant Cell | 2012

The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program.

Marianna Fasoli; Silvia Dal Santo; Sara Zenoni; Giovanni Battista Tornielli; Lorenzo Farina; Anita Zamboni; Andrea Porceddu; Luca Venturini; Manuele Bicego; Vittorio Murino; Alberto Ferrarini; Massimo Delledonne; Mario Pezzotti

The authors developed a comprehensive transcriptome atlas in grapevine by comparing the genes expressed in 54 diverse samples accounting for ∼91% of all known grapevine genes. Using a panel of different statistical techniques, they found that the whole plant undergoes transcriptomic reprogramming, driving it towards maturity. We developed a genome-wide transcriptomic atlas of grapevine (Vitis vinifera) based on 54 samples representing green and woody tissues and organs at different developmental stages as well as specialized tissues such as pollen and senescent leaves. Together, these samples expressed ∼91% of the predicted grapevine genes. Pollen and senescent leaves had unique transcriptomes reflecting their specialized functions and physiological status. However, microarray and RNA-seq analysis grouped all the other samples into two major classes based on maturity rather than organ identity, namely, the vegetative/green and mature/woody categories. This division represents a fundamental transcriptomic reprogramming during the maturation process and was highlighted by three statistical approaches identifying the transcriptional relationships among samples (correlation analysis), putative biomarkers (O2PLS-DA approach), and sets of strongly and consistently expressed genes that define groups (topics) of similar samples (biclustering analysis). Gene coexpression analysis indicated that the mature/woody developmental program results from the reiterative coactivation of pathways that are largely inactive in vegetative/green tissues, often involving the coregulation of clusters of neighboring genes and global regulation based on codon preference. This global transcriptomic reprogramming during maturation has not been observed in herbaceous annual species and may be a defining characteristic of perennial woody plants.


The Plant Cell | 2004

Downregulation of the Petunia hybrida α-Expansin Gene PhEXP1 Reduces the Amount of Crystalline Cellulose in Cell Walls and Leads to Phenotypic Changes in Petal Limbs

Sara Zenoni; Lara Reale; Giovanni Battista Tornielli; Luisa Lanfaloni; Andrea Porceddu; Alberto Ferrarini; Chiaraluce Moretti; Anita Zamboni; Adolfo Speghini; Francesco Ferranti; Mario Pezzotti

The expansins comprise a family of proteins that appear to be involved in the disruption of the noncovalent bonds between cellulose microfibrils and cross-linking glycans, thereby promoting wall creep. To understand better the expansion process in Petunia hybrida (petunia) flowers, we isolated a cDNA corresponding to the PhEXP1 α-expansin gene of P. hybrida. Evaluation of the tissue specificity and temporal expression pattern demonstrated that PhEXP1 is preferentially expressed in petal limbs during development. To determine the function of PhEXP1, we used a transgenic antisense approach, which was found to cause a decrease in petal limb size, a reduction in the epidermal cell area, and alterations in cell wall morphology and composition. The diminished cell wall thickness accompanied by a reduction in crystalline cellulose indicates that the activity of PhEXP1 is associated with cellulose metabolism. Our results suggest that expansins play a role in the assembly of the cell wall by affecting either cellulose synthesis or deposition.


Molecular Breeding | 2009

A consensus list of microsatellite markers for olive genotyping

Luciana Baldoni; Nicolò G. M. Cultrera; Roberto Mariotti; Claudia Ricciolini; Sergio Arcioni; Giovanni G. Vendramin; Anna Buonamici; Andrea Porceddu; V. Sarri; Maria A. Ojeda; Isabel Trujillo; Luis Rallo; Angjelina Belaj; Enzo Perri; Amelia Salimonti; Innocenzo Muzzalupo; Alberto Casagrande; O. Lain; Rachele Messina; Raffaele Testolin

Cultivar identification is a primary concern for olive growers, breeders, and scientists. This study was aimed at examining the SSR markers retrieved from the literature and currently used in olive study, in order to select those most effective in characterizing the olive accessions and to make possible the comparison of data obtained by different laboratories. Olive microsatellite profiles were assessed by four independent laboratories, which analyzed 37 pre-selected SSR loci on a set of 21 cultivars. These SSR markers were initially tested for their reproducibility, power of discrimination and number of amplified loci/alleles. Independent segregation was tested for each pair of SSRs in a controlled cross and the allelic error rate was quantified. Some of them were finally selected as the most informative and reliable. Most of the alleles were sequenced and their sizes were determined. Profiles of the reference cultivars and a list of alleles with their sizes obtained by sequencing are reported. Several genetic parameters have been analysed on a larger set of cultivars allowing for a deeper characterization of the selected loci. Results of this study provide a list of recommended markers and protocols for olive genotyping as well as the allelic profile of a set of reference cultivars that would be useful for the establishment of a universal database of olive accessions.


The Plant Cell | 2011

Medicago truncatula CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins

Maria Carelli; Elisa Biazzi; Francesco Panara; Aldo Tava; Laura Scaramelli; Andrea Porceddu; Neil S. Graham; Miriam Odoardi; Efisio Piano; Sergio Arcioni; Sean T. May; Carla Scotti; Ornella Calderini

Triterpenic saponins participate in plant defense mechanisms and possess a broad spectrum of biological and pharmacological properties. This article identifies the P450 cytochrome CYP716A12 as a key gene in the synthesis of hemolytic saponins in Medicago truncatula by a combination of genetic and biochemical analyses. Saponins, a group of glycosidic compounds present in several plant species, have aglycone moieties that are formed using triterpenoid or steroidal skeletons. In spite of their importance as antimicrobial compounds and their possible benefits for human health, knowledge of the genetic control of saponin biosynthesis is still poorly understood. In the Medicago genus, the hemolytic activity of saponins is related to the nature of their aglycone moieties. We have identified a cytochrome P450 gene (CYP716A12) involved in saponin synthesis in Medicago truncatula using a combined genetic and biochemical approach. Genetic loss-of-function analysis and complementation studies showed that CYP716A12 is responsible for an early step in the saponin biosynthetic pathway. Mutants in CYP716A12 were unable to produce hemolytic saponins and only synthetized soyasaponins, and were thus named lacking hemolytic activity (lha). In vitro enzymatic activity assays indicate that CYP716A12 catalyzes the oxidation of β-amyrin and erythrodiol at the C-28 position, yielding oleanolic acid. Transcriptome changes in the lha mutant showed a modulation in the main steps of triterpenic saponin biosynthetic pathway: squalene cyclization, β-amyrin oxidation, and glycosylation. The analysis of CYP716A12 expression in planta is reported together with the sapogenin content in different tissues and stages. This article provides evidence for CYP716A12 being a key gene in hemolytic saponin biosynthesis.


Plant Physiology | 2005

SERK and APOSTART. Candidate genes for apomixis in Poa pratensis

Emidio Albertini; Gianpiero Marconi; Lara Reale; Gianni Barcaccia; Andrea Porceddu; Francesco Ferranti; Mario Falcinelli

Seed production generally requires the mating of opposite sex gametes. Apomixis, an asexual mode of reproduction, avoids both meiotic reduction and egg fertilization. The essential feature of apomixis is that an embryo is formed autonomously by parthenogenesis from an unreduced egg of an embryo sac generated through apomeiosis. If apomixis were well understood and harnessed, it could be exploited to indefinitely propagate superior hybrids or specific genotypes bearing complex gene sets. A more profound knowledge of the mechanisms that regulate reproductive events would contribute fundamentally to understanding the genetic control of the apomictic pathway. In Poa pratensis, we isolated and characterized two genes, PpSERK (SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE) and APOSTART. These full-length genes were recovered by rapid amplification of cDNA ends and their temporal and spatial expression patterns were assessed by reverse transcription-polymerase chain reaction and in situ hybridization, respectively. The expression of PpSERK and APOSTART differed in apomictic and sexual genotypes. Their putative role in cell-signaling transduction cascades and trafficking events required during sporogenesis, gametogenesis, and embryogenesis in plants is reported and discussed. We propose that, in nucellar cells of apomictic genotypes, PpSERK is the switch that channels embryo sac development and that it may also redirect signaling gene products to compartments other than their typical ones. The involvement of APOSTART in meiosis and programmed cell death is also discussed.


Theoretical and Applied Genetics | 2002

Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers

Andrea Porceddu; Emidio Albertini; Gianni Barcaccia; Egizia Falistocco; Mario Falcinelli

Abstract The high versatility of the mode of reproduction and the retention of a pollen recognition system are the factors responsible for the extreme complexity of the genome in Poa pratensis L. Two genetic maps, one of an apomictic and one of a sexual genotype, were constructed using a two-way pseudo-testcross strategy and multiplex PCR-based molecular markers (AFLP and SAMPL). Due to the high ploidy level and the uncertainty of chromosome pairing-behavior at meiosis, only parent-specific single-dose markers (SDMs) that segregated 1:1 in an F1 mapping population (161 out of 299 SAMPLs, and 70 out of 275 AFLPs) were used for linkage analysis. A total of 41 paternal (33 SAMPLs and 8 AFLPs) and 47 maternal (33 SAMPLs and 14 AFLPs) SDMs, tested to be linked in coupling phase, were mapped to 7+7 linkage groups covering 367 and 338.4 cM, respectively. The comparison between the two marker systems revealed that SAMPL markers were statistically more efficient than AFLP ones in detecting parent-specific SDMs (75% vs 32.4%). There were no significant differences in the percentages of distorted marker alleles detected by the two marker systems (27.8% of SAMPLs vs 21.3% of AFLPs). The pairwise comparison of co-segregational groups for linkage detection between marker loci suggested that at least some of the P. pratensis chromosomes pair preferentially at meiosis-I.


Sexual Plant Reproduction | 2002

Patterns of cell division and expansion in developing petals of Petunia hybrida

Lara Reale; Andrea Porceddu; Luisa Lanfaloni; Chiaraluce Moretti; Sara Zenoni; Mario Pezzotti; Bruno Romano; Francesco Ferranti

Abstract. The definition of the patterns of cell division and expansion in plant development is of fundamental importance in understanding the mechanics of morphogenesis. By studying cell division and expansion patterns, we have assembled a developmental map of Petunia hybrida petals. Cycling cells were labelled with in situ markers of the cell cycle, whereas cell expansion was followed by assessing cell size in representative regions of developing petals. The outlined cell division and expansion patterns were related to organ asymmetry. Initially, cell divisions are uniformly distributed throughout the petal and decline gradually, starting from the basal part, to form a striking gradient of acropetal polarity. Cell areas, in contrast, increased first in the basal portion and then gradually towards the petal tip. This growth strategy highlighted a cell size control model based on cell-cycle departure time. The dorso-ventral asymmetry can be explained in terms of differential regulation of cell expansion. Cells of the abaxial epidermis enlarged earlier to a higher final extent than those of the adaxial epidermis. Epidermal appendage differentiation contributed to the remaining asymmetry. On the whole our study provides a sound basis for mutant analyses and to investigate the impact of specific (environmental) factors on petal growth.


Transgenic Research | 2003

Improved in planta expression of the human islet autoantigen glutamic acid decarboxylase (GAD65)

Linda Avesani; Alberto Falorni; Giovanni Battista Tornielli; Carla Marusic; Andrea Porceddu; Annalisa Polverari; Claudia Faleri; Filippo Calcinaro; Mario Pezzotti

The smaller isoform of the enzyme glutamic acid decarboxylase (GAD65) is a major islet autoantigen in autoimmune type 1 diabetes mellitus (T1DM). Transgenic plants expressing human GAD65 (hGAD65) are a potential means of direct oral administration of the islet autoantigen in order to induce tolerance and prevent clinical onset of disease. We have previously reported the successful generation of transgenic tobacco and carrot that express immunoreactive, full-length hGAD65. In the present study, we tested the hypothesis that the expression levels of recombinant hGAD65 in transgenic plants can be increased by targeting the enzyme to the plant cell cytosol and by mediating expression through the potato virus X (PVX) vector. By substituting the NH2-terminal region of hGAD65 with a homologous region of rat GAD67, a chimeric GAD671-87/GAD6588-585 molecule was expressed in transgenic tobacco plants. Immunolocalization analysis showed that immunoreactive GAD67/65 was found in the plant cell cytosol. By using a radio-immuno assay with human serum from a GAD65 autoantibody-positive T1DM patient, the highest expression level of the recombinant GAD67/65 protein was estimated to be 0.19% of the total soluble protein, compared to only 0.04% of wild-type hGAD65. Transient expression of wild-type, full-length hGAD65 in N. benthamiana mediated by PVX infection was associated with expression levels of immunoreactive protein as high as 2.2% of total soluble protein. This substantial improvement of the expression of hGAD65 in plants paves the way for immunoprevention studies of oral administration of GAD65-containing transgenic plant material in animal models of spontaneous autoimmune diabetes.


Molecular Breeding | 1999

Transgenic plants expressing human glutamic acid decarboxylase(GAD65), a major autoantigen in insulin-dependent diabetes mellitus

Andrea Porceddu; Alberto Falorni; Nicoletta Ferradini; Anna Cosentino; Filippo Calcinaro; Claudia Faleri; Mauro Cresti; Franco Lorenzetti; P. Brunetti; Mario Pezzotti

Parenteral and oral administration of autoantigens can induce immune tolerance in autoimmune diseases. Prophylactic therapy based on oral administration of human autoantigens is not, however, feasible when sufficient quantities of candidate autoantigens are not available. Transgenic plants that express high levels of recombinant proteins would allow large quantities of autoantigens to be produced at relatively low costs. In addition, transgenic food would provide a simple and direct method of delivering autoantigens. The production and the characterization of transgenic tobacco and carrot plants expressing human GAD65, a major autoantigen in human insulin-dependent diabetes mellitus (IDDM), is reported. Immunogold labeling and electron microscopy of transgenic tobacco tissue shows the selective targeting of human GAD65 to chloroplast tylacoids and mitochondria. In planta expressed GAD65 has a correct immunoreactivity with IDDM-associated autoantibodies and retains enzymatic activity, a finding that suggests a correct protein folding. In transgenic tobacco and carrot the expression levels of human GAD65 varies between 0.01% and 0.04% of total soluble proteins. Transgenic edible plant organs are now available to study the feasibility of inducing immune tolerance in IDDM animals by oral administration of GAD65.


Sexual Plant Reproduction | 2001

Analysis of gene expression during flowering in apomeiotic mutants of Medicago spp.: cloning of ESTs and candidate genes for 2n eggs

Gianni Barcaccia; Serena Varotto; Stefano Meneghetti; Emidio Albertini; Andrea Porceddu; Paolo Parrini; Margherita Lucchin

Mutants showing features of apomixis have been documented in alfalfa (Medicago sativa L.), a natural outcrossing sexual species. A differential display of mRNAs that combines cDNA-AFLP markers and bulked segregant analysis was carried out with the aim of selecting expressed sequence tags (ESTs) and cloning candidate genes for apomeiosis in mutants of alfalfa characterized by 2n egg formation at high frequencies. The approach enabled us to select either mutant- or wild type-specific transcript derived-fragments and to detect transcriptional changes potentially related to 2n eggs. Sequence alignments of a subset of 40 polymorphic clones showed significant homologies to genes of known function. An EST with identity to a β-tubulin gene, highly expressed in the wild type and poorly expressed in the apomeiotic mutants, and an EST with identity to a Mob1-like gene, qualitatively polymorphic between pre- and post-meiotic stages, were selected as candidate genes for apomeiosis because of their putative roles in the cell cycle. A number of clone-specific primers were designed for performing both 5′ and 3′ rapid amplification of cDNA ends to obtain the full-length clones. Southern blot hybridization revealed that both clones belong to a multi-gene family with a minimum of three genomic DNA members each. Northern blot hybridization of total RNA samples and in situ hybridization of whole buds enabled the definition of their temporal and spatial expression patterns in reproductive organs. Experimental achievements towards the elucidation of apomeiotic megasporogenesis in alfalfa are presented and discussed

Collaboration


Dive into the Andrea Porceddu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge