Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sam W. Lee is active.

Publication


Featured researches published by Sam W. Lee.


Nature | 2011

Selective killing of cancer cells by a small molecule targeting the stress response to ROS

Lakshmi Raj; Takao Ide; Aditi U. Gurkar; Michael Foley; Monica Schenone; Xiaoyu Li; Nicola Tolliday; Todd R. Golub; Steven A. Carr; Alykhan F. Shamji; Anna Mandinova; Stuart L. Schreiber; Sam W. Lee

Malignant transformation, driven by gain-of-function mutations in oncogenes and loss-of-function mutations in tumour suppressor genes, results in cell deregulation that is frequently associated with enhanced cellular stress (for example, oxidative, replicative, metabolic and proteotoxic stress, and DNA damage). Adaptation to this stress phenotype is required for cancer cells to survive, and consequently cancer cells may become dependent upon non-oncogenes that do not ordinarily perform such a vital function in normal cells. Thus, targeting these non-oncogene dependencies in the context of a transformed genotype may result in a synthetic lethal interaction and the selective death of cancer cells. Here we used a cell-based small-molecule screening and quantitative proteomics approach that resulted in the unbiased identification of a small molecule that selectively kills cancer cells but not normal cells. Piperlongumine increases the level of reactive oxygen species (ROS) and apoptotic cell death in both cancer cells and normal cells engineered to have a cancer genotype, irrespective of p53 status, but it has little effect on either rapidly or slowly dividing primary normal cells. Significant antitumour effects are observed in piperlongumine-treated mouse xenograft tumour models, with no apparent toxicity in normal mice. Moreover, piperlongumine potently inhibits the growth of spontaneously formed malignant breast tumours and their associated metastases in mice. Our results demonstrate the ability of a small molecule to induce apoptosis selectively in cells that have a cancer genotype, by targeting a non-oncogene co-dependency acquired through the expression of the cancer genotype in response to transformation-induced oxidative stress.


The EMBO Journal | 2001

Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1.

Gerburg Wulf; Akihide Ryo; Gerald Wulf; Sam W. Lee; Tianhua Niu; Victoria Petkova; Kun Ping Lu

Phosphorylation on serines or threonines preceding proline (Ser/Thr‐Pro) is a major signaling mechanism. The conformation of a subset of phosphorylated Ser/Thr‐Pro motifs is regulated by the prolyl isomerase Pin1. Inhibition of Pin1 induces apoptosis and may also contribute to neuronal death in Alzheimers disease. However, little is known about the role of Pin1 in cancer or in modulating transcription factor activity. Here we report that Pin1 is strikingly overexpressed in human breast cancers, and that its levels correlate with cyclin D1 levels in tumors. Overexpression of Pin1 increases cellular cyclin D1 protein and activates its promoter. Furthermore, Pin1 binds c‐Jun that is phosphorylated on Ser63/73‐Pro motifs by activated JNK or oncogenic Ras. Moreover, Pin1 cooperates with either activated Ras or JNK to increase transcriptional activity of c‐Jun towards the cyclin D1 promoter. Thus, Pin1 is up‐regulated in human tumors and cooperates with Ras signaling in increasing c‐Jun transcriptional activity towards cyclin D1. Given the crucial roles of Ras signaling and cyclin D1 overexpression in oncogenesis, our results suggest that overexpression of Pin1 may promote tumor growth.


Oncogene | 1998

Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells.

Sam W. Lee; Corinne Reimer; Phil Oh; Doreen B.Campbell; Jan E. Schnitzer

Cancer development is a multistage process that results from the step-wise acquisition of somatic alterations in diverse genes. Recent studies indicate that caveolin-1 expression correlates with the level of oncogenic transformation in NIH3T3 cells, suggesting that caveolin in caveolae may regulate normal cell proliferation. In order to better understand potential functions of caveolin-1 in cancer development, we have studied expression levels of caveolin-1 in human breast cancer cells, and have found that caveolin expression is significantly reduced in human breast cancer cells compared with their normal mammary epithelial counterparts. When the caveolin cDNA linked to the CMV promoter is transfected into human mammary cancer cells having no detectable endogenous caveolin, overexpression of caveolin-1 resulted in substantial growth inhibition, as seen by the 50% decrease in growth rate and by ∼l5-fold reduction in colony formation in soft agar. In addition, characterization of caveolin-1 expression during cell cycle progression indicates that expression of α-caveolin-1 is regulated during cell cycle. Furthermore p53-deficient cells showed a loss in caveolin expression. In summary, the overall expression patterns, its ability to inhibit tumor growth in culture, its regulation during the cell cycle, and the loss of expression in p53-deficient cells all are consistent with an important growth regulating function for caveolin-1 in normal human mammary cells, that needs to be repressed in oncogenic transformation and tumor cell growth.


Proceedings of the National Academy of Sciences of the United States of America | 1991

Positive selection of candidate tumor-suppressor genes by subtractive hybridization.

Sam W. Lee; Catherine Tomasetto; Ruth Sager

A positive selection system designed to identify and recover candidate tumor-suppressor genes is described. The system compares mRNA expression of genes from normal and tumor-derived human mammary epithelial cells grown in a special medium that supports similar growth rates of the two cell types. mRNAs uniquely expressed in normal cells are recovered as cDNAs after subtraction with mRNA from tumor cells. Seven different clones, from 0.6 to 4.8 kilobases in transcript size and including both rare and abundunt transcripts, were recovered in the first 23 clones analyzed. Among the isolated clones were genes encoding the gap-junction protein connexin 26, two different keratins, and glutathione-S-transferase pi, as well as an unknown gene in the S100 family of small calcium-binding proteins. In principle, tumor-suppressor genes include two classes: class I, in which loss of function results from mutation or deletion of DNA and class II, in which loss of function is from a regulatory block to expression. A class II suppressor gene is assumed to be regulated by a different suppressor gene that lost its function by mutation or deletion. Both classes of tumor-suppressor genes may provide valuable proteins with clinical applications in cancer diagnosis or therapy. Class II suppressors may be especially useful because the normal genes are present and their reexpression may be inducible by drugs or other treatments.


Molecular and Cellular Biology | 2003

Influence of Induced Reactive Oxygen Species in p53-Mediated Cell Fate Decisions

Salvador Macip; Makoto Igarashi; Petra Berggren; Jian Yu; Sam W. Lee; Stuart A. Aaronson

ABSTRACT The p53 tumor suppressor gene can induce either apoptosis or a permanent growth arrest (also termed senescence) phenotype in response to cellular stresses. We show that the increase in intracellular reactive oxygen species (ROS) associated with the magnitude of p53 protein expression correlated with the induction of either senescence or apoptosis in both normal and cancer cells. ROS inhibitors ameliorated both p53-dependent cell fates, implicating ROS accumulation as an effector in each case. The absence of Bax or PUMA strongly inhibited both p53-induced apoptosis and ROS increase, indicating an important role these p53 targets affecting mitochondrial function genes in p53-mediated ROS accumulation. Moreover, physiological p53 levels in combination with an exogenous ROS source were able to convert a p53 senescence response into apoptosis. All of these findings establish a critical role of ROS accumulation and mitochondrial function in p53-dependent cell fates and show that other ROS inducers can collaborate with p53 to influence these fate decisions. Thus, our studies imply that therapeutic agents that generate ROS are more likely to be toxic for normal cells than p53-negative tumor cells and provide a rationale for identifying therapeutic agents that do not complement p53 in ROS generation to ameliorate the cytotoxic side effects in normal cells.


The EMBO Journal | 2002

Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence

Salvador Macip; Makoto Igarashi; Li Fang; Angus Chen; Zhen-Qiang Pan; Sam W. Lee; Stuart A. Aaronson

The cyclin‐dependent kinase (CDK) inhibitor p21Waf1/Cip1/Sdi1 was identified initially as a gene induced in senescent cells and itself has been shown to cause permanent growth arrest/senescence. Reactive oxygen species (ROS), a byproduct of oxidative processes, can also induce an irreversible growth arrest similar to senescence. Here we show that p21 increased intracellular levels of ROS both in normal fibroblasts and in p53‐negative cancer cells. N‐acetyl‐L‐cysteine, an ROS inhibitor, rescued p21‐induced senescence, showing that ROS elevation is necessary for induction of the permanent growth arrest phenotype. p16Ink4a, a CDK4‐ and CDK6‐specific inhibitor, failed to increase ROS levels, and cell cycle arrest induced by p16 was reversible following its down‐regulation, demonstrating the specificity of this p21 effect. A p21 mutant that lacked the ability to bind proliferating cell nuclear antigen (PCNA) retained the ability to induce both ROS and permanent growth arrest. All of these findings establish that p21 mediates senescence by a mechanism involving ROS accumulation which does not require either its PCNA binding or the CDK inhibitory functions shared with p16.


Nature Chemical Biology | 2009

A small molecule that binds Hedgehog and blocks its signaling in human cells

Benjamin Z. Stanton; Lee F. Peng; Nicole Maloof; Kazuo Nakai; Xiang Wang; Jay L Duffner; Kennedy M Taveras; Joel M. Hyman; Sam W. Lee; Angela N. Koehler; James K. Chen; Julia L. Fox; Anna Mandinova; Stuart L. Schreiber

Small-molecule inhibition of extracellular proteins that activate membrane receptors has proved to be extremely challenging. Diversity-oriented synthesis and small-molecule microarrays enabled the discovery of robotnikinin, a small molecule that binds the extracellular Sonic Hedgehog (Shh) protein and blocks Shh-signaling in cell lines, human primary keratinocytes and a synthetic model of human skin. Shh pathway activity is rescued by small-molecule agonists of Smoothened, which functions immediately downstream of the Shh receptor Patched.


Molecular and Cellular Biology | 2002

PIN1 Is an E2F Target Gene Essential for Neu/Ras-Induced Transformation of Mammary Epithelial Cells

Akihide Ryo; Yih-Cherng Liou; Gerburg Wulf; Masafumi Nakamura; Sam W. Lee; Kun Ping Lu

ABSTRACT Oncogenes Neu/HER2/ErbB2 and Ras can induce mammary tumorigenesis via upregulation of cyclin D1. One major regulatory mechanism in these oncogenic signaling pathways is phosphorylation of serines or threonines preceding proline (pSer/Thr-Pro). Interestingly, the pSer/Thr-Pro motifs in proteins exist in two completely distinct cis and trans conformations, whose conversion is catalyzed specifically by the essential prolyl isomerase Pin1. By isomerizing pSer/Thr-Pro bonds, Pin1 can regulate the conformation and function of certain phosphorylated proteins. We have previously shown that Pin1 is overexpressed in breast tumors and positively regulates cyclin D1 by transcriptional activation and posttranslational stabilization. Moreover, in Pin1 knockout mice, mammary epithelial cells fail to undergo massive proliferation during pregnancy, as is the case in cyclin D1 null mice. These results indicate that Pin1 is upregulated in breast cancer and may be involved in mammary tumors. However, the mechanism of Pin1 overexpression in cancer and its significance in cell transformation remain largely unknown. Here we demonstrate that PIN1 expression is mediated by the transcription factor E2F and enhanced by c-Neu and Ha-Ras via E2F. Furthermore, overexpression of Pin1 not only confers transforming properties on mammary epithelial cells but also enhances the transformed phenotypes of Neu/Ras-transformed mammary epithelial cells. In contrast, inhibition of Pin1 suppresses Neu- and Ras-induced transformed phenotypes, which can be fully rescued by overexpression of a constitutively active cyclin D1 mutant that is refractory to the Pin1 inhibition. Thus, Pin1 is an E2F target gene that is essential for the Neu/Ras-induced transformation of mammary epithelial cells through activation of cyclin D1.


Nature Cell Biology | 2004

ASC is a Bax adaptor and regulates the p53¿Bax mitochondrial apoptosis pathway

Takao Ohtsuka; Hoon Ryu; Yohji A. Minamishima; Salvador Macip; Junji Sagara; Keiichi I. Nakayama; Stuart A. Aaronson; Sam W. Lee

The apoptosis-associated speck-like protein (ASC) is an unusual adaptor protein that contains the Pyrin/PAAD death domain in addition to the CARD protein–protein interaction domain. Here, we present evidence that ASC can function as an adaptor molecule for Bax and regulate a p53–Bax mitochondrial pathway of apoptosis. When ectopically expressed, ASC interacted directly with Bax, colocalized with Bax to the mitochondria, induced cytochrome c release with a significant reduction of mitochondrial membrane potential and resulted in the activation of caspase-9, -2 and -3. The rapid induction of apoptosis by ASC was not observed in Bax-deficient cells. We also show that induction of ASC after exposure to genotoxic stress is dependent on p53. Blocking of endogenous ASC expression by small-interfering RNA (siRNA) reduced the apoptotic response and inhibited translocation of Bax to mitochondria in response to p53 or genotoxic insult, suggesting that ASC is required to translocate Bax to the mitochondria. Our findings demonstrate that ASC has an essential role in the intrinsic mitochondrial pathway of apoptosis through a p53–Bax network.


Nature | 2008

Prolyl 4-hydroxylation regulates Argonaute 2 stability

Hank H. Qi; Pat P. Ongusaha; Johanna Myllyharju; Dongmei Cheng; Outi Pakkanen; Yujiang Shi; Sam W. Lee; Junmin Peng; Yang Shi

Human Argonaute (Ago) proteins are essential components of the RNA-induced silencing complexes (RISCs). Argonaute 2 (Ago2) has a P-element-induced wimpy testis (PIWI) domain, which folds like RNase H and is responsible for target RNA cleavage in RNA interference. Proteins such as Dicer, TRBP, MOV10, RHA, RCK/p54 and KIAA1093 associate with Ago proteins and participate in small RNA processing, RISC loading and localization of Ago proteins in the cytoplasmic messenger RNA processing bodies. However, mechanisms that regulate RNA interference remain obscure. Here we report physical interactions between Ago2 and the α-(P4H-α(I)) and β-(P4H-β) subunits of the type I collagen prolyl-4-hydroxylase (C-P4H(I)). Mass spectrometric analysis identified hydroxylation of the endogenous Ago2 at proline 700. In vitro, both Ago2 and Ago4 seem to be more efficiently hydroxylated than Ago1 and Ago3 by recombinant human C-P4H(I). Importantly, human cells depleted of P4H-α(I) or P4H-β by short hairpin RNA and P4H-α(I) null mouse embryonic fibroblast cells showed reduced stability of Ago2 and impaired short interfering RNA programmed RISC activity. Furthermore, mutation of proline 700 to alanine also resulted in destabilization of Ago2, thus linking Ago2 P700 and hydroxylation at this residue to its stability regulation. These findings identify hydroxylation as a post-translational modification important for Ago2 stability and effective RNA interference.

Collaboration


Dive into the Sam W. Lee's collaboration.

Top Co-Authors

Avatar

Stuart A. Aaronson

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toru Ouchi

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Li Fang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Young-Bum Kim

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge