Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samantha B. Joye is active.

Publication


Featured researches published by Samantha B. Joye.


Frontiers in Ecology and the Environment | 2009

Forecasting the effects of accelerated sea‐level rise on tidal marsh ecosystem services

Christopher Craft; Jonathan Clough; Jeff Ehman; Samantha B. Joye; Richard Park; Steve Pennings; Hongyu Guo; Megan Machmuller

We used field and laboratory measurements, geographic information systems, and simulation modeling to investigate the potential effects of accelerated sea-level rise on tidal marsh area and delivery of ecosystem ser- vices along the Georgia coast. Model simulations using the Intergovernmental Panel on Climate Change (IPCC) mean and maximum estimates of sea-level rise for the year 2100 suggest that salt marshes will decline in area by 20% and 45%, respectively. The area of tidal freshwater marshes will increase by 2% under the IPCC mean scenario, but will decline by 39% under the maximum scenario. Delivery of ecosystem services associated with productivity (macrophyte biomass) and waste treatment (nitrogen accumulation in soil, potential denitrification) will also decline. Our findings suggest that tidal marshes at the lower and upper salinity ranges, and their attendant delivery of ecosystem services, will be most affected by accelerated sea- level rise, unless geomorphic conditions (ie gradual increase in elevation) enable tidal freshwater marshes to migrate inland, or vertical accretion of salt marshes to increase, to compensate for accelerated sea-level rise.


Science | 1995

Influence of Sulfide Inhibition of Nitrification on Nitrogen Regeneration in Sediments

Samantha B. Joye; James T. Hollibaugh

Nitrification, a central process in the nitrogen cycle, converts ammonium to nitrite or nitrate. In experiments with estuarine sediment, addition of 60 and 100 μM hydrogen sulfide (HS−) reduced nitrification by 50 and 100 percent, respectively. Aerobic incubation of ammonium-enriched sediment slurries showed that previous HS− exposure reduced nitrification for at least 24 hours; nitrification rates recovered slowly after one-time HS− exposure. Sulfide inhibition of nitrification could limit nitrogen loss through coupled nitrification-denitrification and may contribute to the previously observed difference in net nitrogen cycling between freshwater and marine sediments. This interaction could also exacerbate eutrophication in coastal environments.


Nature | 2007

Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria

Olaf Kniemeyer; Florin Musat; Stefan M. Sievert; Katrin Knittel; Heinz Wilkes; Martin Blumenberg; Walter Michaelis; Arno Classen; Carsten Bolm; Samantha B. Joye; Friedrich Widdel

The short-chain hydrocarbons ethane, propane and butane are constituents of natural gas. They are usually assumed to be of thermochemical origin, but biological formation of ethane and propane has been also observed. Microbial utilization of short-chain hydrocarbons has been shown in some aerobic species but not in anaerobic species of bacteria. On the other hand, anaerobic utilization of short-chain hydrocarbons would in principle be expected because various anaerobic bacteria grow with higher homologues (≥C6). Indeed, chemical analyses of hydrocarbon-rich habitats with limited or no access of oxygen indicated in situ biodegradation of short-chain hydrocarbons. Here we report the enrichment of sulphate-reducing bacteria (SRB) with such capacity from marine hydrocarbon seep areas. Propane or n-butane as the sole growth substrate led to sediment-free sulphate-reducing enrichment cultures growing at 12, 28 or 60 °C. With ethane, a slower enrichment with residual sediment was obtained at 12 °C. Isolation experiments resulted in a mesophilic pure culture (strain BuS5) that used only propane and n-butane (methane, isobutane, alcohols or carboxylic acids did not support growth). Complete hydrocarbon oxidation to CO2 and the preferential oxidation of 12C-enriched alkanes were observed with strain BuS5 and other cultures. Metabolites of propane included iso- and n-propylsuccinate, indicating a subterminal as well as an unprecedented terminal alkane activation with involvement of fumarate. According to 16S ribosomal RNA analyses, strain BuS5 affiliates with Desulfosarcina/Desulfococcus, a cluster of widespread marine SRB. An enrichment culture with propane growing at 60 °C was dominated by Desulfotomaculum-like SRB. Our results suggest that diverse SRB are able to thrive in seep areas and gas reservoirs on propane and butane, thus altering the gas composition and contributing to sulphide production.


BioScience | 2012

Oil Impacts on Coastal Wetlands: Implications for the Mississippi River Delta Ecosystem after the Deepwater Horizon Oil Spill

Irving A. Mendelssohn; Gary L. Andersen; Donald M. Baltz; Rex H. Caffey; Kevin R. Carman; John W. Fleeger; Samantha B. Joye; Qianxin Lin; Edward Maltby; Edward B. Overton; Lawrence P. Rozas

On 20 April 2010, the Deepwater Horizon explosion, which released a US government—estimated 4.9 million barrels of crude oil into the Gulf of Mexico, was responsible for the death of 11 oil workers and, possibly, for an environmental disaster unparalleled in US history. For 87 consecutive days, the Macondo well continuously released crude oil into the Gulf of Mexico. Many kilometers of shoreline in the northern Gulf of Mexico were affected, including the fragile and ecologically important wetlands of Louisianas Mississippi River Delta ecosystem. These wetlands are responsible for a third of the nations fish production and, ironically, help to protect an energy infrastructure that provides a third of the nations oil and gas supply. Here, we provide a basic overview of the chemistry and biology of oil spills in coastal wetlands and an assessment of the potential and realized effects on the ecological condition of the Mississippi River Delta and its associated flora and fauna.


Global Biogeochemical Cycles | 1998

Importance of suspended participates in riverine delivery of bioavailable nitrogen to coastal zones

Lawrence M. Mayer; Richard G. Keil; Stephen A. Macko; Samantha B. Joye; Kathleen C. Ruttenberg; Robert C. Aller

Total nitrogen (TN) loadings in riverine sediments and their coastal depocenters were compared for 11 river systems worldwide to assess the potential impact of riverine particulates on coastal nitrogen budgets. Strong relationships between sediment specific surface area and TN allow these impacts to be estimated without the intense sampling normally required to achieve such budgets. About half of the systems showed higher nitrogen loadings in the riverine sediments than those from the coastal depocenter. In spite of uncertainties, these comparisons indicate that large, turbid rivers, such as the Amazon, Huanghe, and the Mississippi, deliver sediments that in turn release significant or major fractions of the total riverine nitrogen delivery. Riverine particulates must therefore be considered an essential factor in watershed nutrient loading to coastal ecosystems and may affect delivered nutrient ratios as well as total nutrient loading. The relative importance of particulate versus dissolved delivery has decreased over recent decades in the Mississippi as a result of damming and fertilizer use in the watershed.


Nature | 2007

Evidence of giant sulphur bacteria in Neoproterozoic phosphorites

Jake V. Bailey; Samantha B. Joye; Karen M. Kalanetra; Beverly E. Flood; Frank A. Corsetti

In situ phosphatization and reductive cell division have recently been discovered within the vacuolate sulphur-oxidizing bacteria. Here we show that certain Neoproterozoic Doushantuo Formation (about 600 million years bp) microfossils, including structures previously interpreted as the oldest known metazoan eggs and embryos, can be interpreted as giant vacuolate sulphur bacteria. Sulphur bacteria of the genus Thiomargarita have sizes and morphologies similar to those of many Doushantuo microfossils, including symmetrical cell clusters that result from multiple stages of reductive division in three planes. We also propose that Doushantuo phosphorite precipitation was mediated by these bacteria, as shown in modern Thiomargarita-associated phosphogenic sites, thus providing the taphonomic conditions that preserved other fossils known from the Doushantuo Formation.


Geology | 1998

Bacterial methane oxidation in sea-floor gas hydrate: Significance to life in extreme environments

Roger Sassen; Ian R. MacDonald; Norman L. Guinasso; Samantha B. Joye; A.G. Requejo; Stephen T. Sweet; Javier Alcalá-Herrera; Debra A. DeFreitas; David R. Schink

Samples of thermogenic hydrocarbon gases, from vents and gas hydrate mounds within a sea-floor chemosynthetic community on the Gulf of Mexico continental slope at about 540 m depth, were collected by research submersible. The study area is characterized by low water temperature (mean = 7 C), high pressure (about 5,400 kPa), and abundant structure II gas hydrate. Bacterial oxidation of hydrate-bound methane (CH{sub 4}) is indicated by three isotopic properties of gas hydrate samples. Relative to the vent gas from which the gas hydrate formed, (1) methane-bound methane is enriched in {sup 13}C by as much as 3.8% PDB (Peedee belemnite), (2) hydrate-bound methane is enriched in deuterium (D) by as much as 37% SMOW (standard mean ocean water), and (3) hydrate-bound carbon dioxide (CO{sub 2}) is depleted in {sup 13}C by as much as 22.4% PDB. Hydrate-associated authigenic carbonate rock is also depleted in {sup 13}C. Bacterial oxidation of methane is a driving force in chemosynthetic communities, and in the concomitant precipitation of authigenic carbonate rock that modifies sea-floor geology. Bacterial oxidation of hydrate-bound methane expands the potential boundaries of life in extreme environments.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Chemical dispersants can suppress the activity of natural oil-degrading microorganisms

Sara Kleindienst; Michael Seidel; Kai Ziervogel; Sharon L. Grim; Kathy Loftis; Sarah Harrison; Sairah Y. Malkin; Matthew J. Perkins; Jennifer A. Field; Mitchell L. Sogin; Thorsten Dittmar; Uta Passow; Patricia M. Medeiros; Samantha B. Joye

Significance Oil spills are a significant source of hydrocarbon inputs into the ocean. In response to oil spills, chemical dispersants are applied to the oil-contaminated seawater to disperse surface slicks into smaller droplets that are presumed to be more bioavailable to microorganisms. We provide evidence that chemical dispersants applied to either deep water or surface water from the Gulf of Mexico did not stimulate oil biodegradation. Direct measurement of alkane and aromatic hydrocarbon oxidation rates revealed either suppression or no stimulation of oil biodegradation in the presence of dispersants. However, dispersants affected microbial community composition and enriched bacterial populations with the ability to use dispersant-derived compounds as growth substrates, while oil-alone amendments enriched for natural hydrocarbon degraders. During the Deepwater Horizon oil well blowout in the Gulf of Mexico, the application of 7 million liters of chemical dispersants aimed to stimulate microbial crude oil degradation by increasing the bioavailability of oil compounds. However, the effects of dispersants on oil biodegradation rates are debated. In laboratory experiments, we simulated environmental conditions comparable to the hydrocarbon-rich, 1,100 m deep plume that formed during the Deepwater Horizon discharge. The presence of dispersant significantly altered the microbial community composition through selection for potential dispersant-degrading Colwellia, which also bloomed in situ in Gulf deep waters during the discharge. In contrast, oil addition to deepwater samples in the absence of dispersant stimulated growth of natural hydrocarbon-degrading Marinobacter. In these deepwater microcosm experiments, dispersants did not enhance heterotrophic microbial activity or hydrocarbon oxidation rates. An experiment with surface seawater from an anthropogenically derived oil slick corroborated the deepwater microcosm results as inhibition of hydrocarbon turnover was observed in the presence of dispersants, suggesting that the microcosm findings are broadly applicable across marine habitats. Extrapolating this comprehensive dataset to real world scenarios questions whether dispersants stimulate microbial oil degradation in deep ocean waters and instead highlights that dispersants can exert a negative effect on microbial hydrocarbon degradation rates.


Archive | 2002

Role of Salt Marshes as Part of Coastal Landscapes

Ivan Valiela; Marci L. Cole; James W. McClelland; Jennifer Hauxwell; Just Cebrián; Samantha B. Joye

Salt marshes are located between land and coastal water environments, and nutrient and production dynamics within salt marshes interact with those of adjoining ecosystems. Salt marshes tend to export materials to deeper waters, as shown by mass balance and stable isotopic studies. Salt marshes also intercept land-derived nutrients, and thus modify the potential response of phytoplankton, macroalgae, and seagrasses in the receiving estuarine waters. In particular, the maintenance of eelgrass meadows seems to depend on the ability of fringing salt marshes to intercept land-derived nitrogen. The bulk of the interception of land-derived nitrogen is likely to be the result of relatively high rates of denitrification characteristic of salt marshes. Thus, through exports of energy-rich materials, and interception of limiting nutrients, salt marsh parcels interact in quantitatively important ways with adjoining units of landscape. These interactions are of importance in understanding the basic functions of these mosaics of different coastal systems, as well as provide information needed to manage estuaries, as for example, in conservation of valuable eelgrass meadows.


Applied and Environmental Microbiology | 2000

Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences.

Bess B. Ward; D. P. Martino; M. C. Diaz; Samantha B. Joye

ABSTRACT Ammonia-oxidizing bacteria were detected by PCR amplification of DNA extracted from filtered water samples throughout the water column of Mono Lake, California. Ammonia-oxidizing members of the β subdivision of the division Proteobacteria (β-subdivisionProteobacteria) were detected using previously characterized PCR primers; target sequences were detected by direct amplification in both surface water and below the chemocline. Denaturing gradient gel electrophoresis analysis indicated the presence of at least four different β-subdivision ammonia oxidizers in some samples. Subsequent sequencing of amplified 16S rDNA fragments verified the presence of sequences very similar to those of culturedNitrosomonas strains. Two separate analyses, carried out under different conditions (different reagents, locations, PCR machines, sequencers, etc.), 2 years apart, detected similar ranges of sequence diversity in these samples. It seems likely that the physiological diversity of nitrifiers exceeds the diversity of their ribosomal sequences and that these sequences represent members of theNitrosomonas europaea group that are acclimated to alkaline, high-salinity environments. Primers specific forNitrosococcus oceanus, a marine ammonia-oxidizing bacterium in the γ subdivision of the Proteobacteria, did not amplify target from any samples.

Collaboration


Dive into the Samantha B. Joye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Willard S. Moore

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Andreas Teske

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia M. Wilson

University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge