Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samantha C. Karunarathna is active.

Publication


Featured researches published by Samantha C. Karunarathna.


Fungal Diversity | 2015

The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts

Subashini C. Jayasiri; Kevin D. Hyde; Hiran A. Ariyawansa; Jayarama D. Bhat; Bart Buyck; Lei Cai; Yu-Cheng Dai; Kamel A. Abd-Elsalam; Damien Ertz; Iman Hidayat; Rajesh Jeewon; E. B. Gareth Jones; Ali H. Bahkali; Samantha C. Karunarathna; Jian-Kui Liu; J. Jennifer Luangsa-ard; H. Thorsten Lumbsch; Sajeewa S. N. Maharachchikumbura; Eric H. C. McKenzie; Jean-Marc Moncalvo; Masoomeh Ghobad-Nejhad; Henrik R. Nilsson; Ka-Lai Pang; O. L. Pereira; Alan J. L. Phillips; Olivier Raspé; Adam W. Rollins; Andrea I. Romero; Javier Etayo; Faruk Selçuk

Taxonomic names are key links between various databases that store information on different organisms. Several global fungal nomenclural and taxonomic databases (notably Index Fungorum, Species Fungorum and MycoBank) can be sourced to find taxonomic details about fungi, while DNA sequence data can be sourced from NCBI, EBI and UNITE databases. Although the sequence data may be linked to a name, the quality of the metadata is variable and generally there is no corresponding link to images, descriptions or herbarium material. There is generally no way to establish the accuracy of the names in these genomic databases, other than whether the submission is from a reputable source. To tackle this problem, a new database (FacesofFungi), accessible at www.facesoffungi.org (FoF) has been established. This fungal database allows deposition of taxonomic data, phenotypic details and other useful data, which will enhance our current taxonomic understanding and ultimately enable mycologists to gain better and updated insights into the current fungal classification system. In addition, the database will also allow access to comprehensive metadata including descriptions of voucher and type specimens. This database is user-friendly, providing links and easy access between taxonomic ranks, with the classification system based primarily on molecular data (from the literature and via updated web-based phylogenetic trees), and to a lesser extent on morphological data when molecular data are unavailable. In FoF species are not only linked to the closest phylogenetic representatives, but also relevant data is provided, wherever available, on various applied aspects, such as ecological, industrial, quarantine and chemical uses. The data include the three main fungal groups (Ascomycota, Basidiomycota, Basal fungi) and fungus-like organisms. The FoF webpage is an output funded by the Mushroom Research Foundation which is an NGO with seven directors with mycological expertise. The webpage has 76 curators, and with the help of these specialists, FoF will provide an updated natural classification of the fungi, with illustrated accounts of species linked to molecular data. The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups. The structure and use of the database is then explained. We would like to invite all mycologists to contribute to these web pages.


Fungal Diversity | 2011

Major clades in tropical Agaricus

Rui-Lin Zhao; Samantha C. Karunarathna; Olivier Raspé; Luis A. Parra; Jacques Guinberteau; Magalie Moinard; André De Kesel; Gérard Barroso; Régis Courtecuisse; Kevin D. Hyde; Atsu K. Guelly; Dennis E. Desjardin; Philippe Callac

Agaricus (Basidiomycota) is a genus of saprobic fungi that includes edible cultivated species such as Agaricus bisporus, the button mushroom. There has been considerable ecological, nutritional and medicinal interest in the genus, yet the extent of its diversity remains poorly known, particularly in subtropical and tropical areas. Classification of tropical species has for a large part followed the classification of temperate species. The objective of our study was to examine to what extent this system of classification is appropriate for tropical Agaricus species. Species from temperate sections were therefore compared to the major clades of tropical species using a phylogenetic approach. ITS1 + 2 sequence data from 128 species were used in the phylogenetic analysis. Specimens included four species of genera closely related to Agaricus, 38 temperate species representing the eight classical sections of the genus, and 86 putative species of Agaricus from tropical areas of Africa, Asia and the Americas. Bayesian and maximum likelihood analyses produced relatively congruent trees and almost identical clades. Our data show that (i) only about one-third of tropical species belong to the classical sections based on temperate species; the systematics of the genus therefore needs to be expanded; (ii) among the remaining two-thirds of tropical species, those from the Americas and those from Africa and/or Asia group in distinct clades, suggesting that secondary diversification occurred in these two areas; (iii) in contrast, several clades of classical sections contain American and African + Asian species along with temperate species. In this study, we used approximately 50 distinct species from a small area of northern Thailand, most probably being novel species. This diversity indicates that Agaricus is a species-rich genus in the tropics as well as in temperate regions. The number of species and the hypothetical paleotropical origin of the genus are discussed.


Fungal Diversity | 2012

Prized edible Asian mushrooms: ecology, conservation and sustainability

Peter E. Mortimer; Samantha C. Karunarathna; Qiaohong Li; Heng Gui; Xueqing Yang; Xuefei Yang; Jun He; Lei Ye; Jiayu Guo; Huili Li; Phongeun Sysouphanthong; Dequn Zhou; Jianchu Xu; Kevin D. Hyde

Mushrooms can be found in forests worldwide and have long been exploited as resources in developed economies because of their important agro-industrial, medicinal and commercial uses. For less developed countries, such as those within the Greater Mekong Subregion, wild harvesting and mushroom cultivation provides a much-needed alternative source of income for rural households. However, this has led to over-harvesting and ultimately environmental degradation in certain areas, thus management guidelines allowing for a more sustained approach to the use of wild mushrooms is required. This article addresses a selection of the most popular and highly sought after edible mushrooms from Greater Mekong Subregion: Astraeus hygrometricus, Boletus edulis, Morchella conica, Ophiocordyceps sinensis, Phlebopus portentosus, Pleurotus giganteus, Termitomyces eurhizus, Thelephora ganbajun, Tricholoma matsuake, and Tuber indicum in terms of value, ecology and conservation. The greatest threat to these and many other mushroom species is that of habitat loss and over-harvesting of wild stocks, thus, by creating awareness of these issues we wish to enable a more sustainable use of these natural products. Thus our paper provides baseline data for these fungi so that future monitoring can establish the effects of continued harvesting on mushroom populations and the related host species.


Mycological Progress | 2011

Three new species of Lentinus from northern Thailand

Samantha C. Karunarathna; Zhu L. Yang; Rui-Lin Zhao; Else C. Vellinga; Ali H. Bahkali; Ekachai Chukeatirote; Kevin D. Hyde

There have been few studies on the taxonomy and biodiversity of the genus Lentinus in Thailand, which is a genus of edible mushrooms. Recently, collections from 17 sites in northern Thailand yielded 47 specimens of Lentinus sensu lato. Three were shown to be new species of Lentinus sensu stricto and Lentinus roseus, L. concentricus and L. megacystidiatus are introduced in this paper. The new species are described and illustrated with line drawings and are justified and compared with similar taxa. Furthermore, ITS sequence data do not match closely with any species presently lodged in GenBank.


Mycologia | 2014

The taxonomic foundation, species circumscription and continental endemisms of Singerocybe: evidence from morphological and molecular data

Jiao Qin; Bang Feng; Zhu L. Yang; Yan-Chun Li; Da Ratkowsky; Genevieve M. Gates; Haruki Takahashi; Karl-Heinz Rexer; Gerhard Kost; Samantha C. Karunarathna

The genus Singerocybe (Tricholomataceae, Agaricales, Basidiomycota) has been the subject of controversy since its proposal in 1988. Its taxonomic foundation, species circumscription and geographical distribution have not yet been examined with molecular sequence data. In this study phylogenetic analyses on this group of fungi were conducted based on collections from Europe, eastern Asia, southern Asia, North America and Australia, with four nuclear markers, ITS, nrLSU, tef1-α and rpb2. Molecular phylogenetic analyses, together with morphological observations, strongly support Singerocybe as a monophyletic group and identify the vesicles in the pileal and stipe cuticle as a synapomorphy of this genus. Seven species are recognized in the genus, including one new species and four new combinations. Clitocybe trogioides and Clitocybe trogioides var. odorifera are synonyms of Singerocybe humilis and Singerocybe alboinfundibuliformis respectively. Most of these species are geographically restricted in their distributions. Furthermore our study expands the distribution range of Singerocybe from the North Temperate Zone to Australia (Tasmania) and tropical southern Asia.


Persoonia | 2017

Study in Agaricus subgenus Minores and allied clades reveals a new American subgenus and contrasting phylogenetic patterns in Europe and Greater Mekong Subregion

Jie Chen; Philippe Callac; Luis A. Parra; Samantha C. Karunarathna; M. Q. He; Magalie Moinard; A. De Kesel; Olivier Raspé; K. Wisitrassameewong; Kevin D. Hyde; Rui-Lin Zhao

Within Agaricus subg. Minores, A. sect. Minores remains a little-studied section due generally to its delicate sporocarps often lacking taxonomically relevant morphological characters. To reconstruct the section, using the recent taxonomic system based on divergence times, and to evaluate the species diversity of A. sect. Minores in the Greater Mekong Subregion, 165 specimens were incorporated in phylogenetic analyses. A dated tree based on nuclear ITS, LSU and tef1-α sequence data allowed us to better circumscribe A. subg. Minores and to propose a new subgenus, A. subg. Minoriopsis, which is only known from tropical and subtropical regions of the Americas. A larger tree based on ITS sequences indicated that, with 81 phylogenetic species, the reconstructed section Minores is now one of the largest sections in the genus. Within A. subg. Minores, a new section, A. sect. Leucocarpi, and eleven new species are described from the Greater Mekong Subregion. Thirty-eight species of A. sect. Minores from this region of Asia were distributed in multiple clades that successively diverged over the past 24 million years. In contrast, species reported from Europe mostly grouped in a single non-tropical clade, suggesting a major species diversification following the middle Miocene climatic optimum.


Mycology | 2014

Optimal conditions of mycelia growth of Laetiporus sulphureus sensu lato

Thatsanee Luangharn; Samantha C. Karunarathna; Kevin D. Hyde; Ekachai Chukeatirote

Laetiporus sulphureus is an edible wood-rotting basidiomycete, growing on decaying logs, stumps, and trunks of many deciduous and coniferous tree species. This fungus produces relatively large striking yellowish or orange-coloured bracket-like fruitbodies. L. sulphureus is widely consumed as a nutritional food because of its fragrance and texture. In this study, two L. sulphureus strains, MFLUCC 12-0546 and MFLUCC 12-0547, isolated from Chiang Rai, Thailand, were investigated for optimal conditions of mycelia growth. Potato dextrose agar and malt extract agar were observed as the favourable medium for mycelia growth. The optimum pH and temperature for the mushroom mycelia were 6–8 and 25–30°C, respectively.


Fungal Diversity | 2018

Fungal diversity notes 840–928: micro-fungi associated with Pandanaceae

Saowaluck Tibpromma; Kevin D. Hyde; Eric H. C. McKenzie; D. Jayarama Bhat; Alan J. L. Phillips; Dhanushka N. Wanasinghe; Milan C. Samarakoon; Ruvishika S. Jayawardena; Asha J. Dissanayake; Danushka S. Tennakoon; Mingkwan Doilom; Rungtiwa Phookamsak; Alvin M. C. Tang; Jianchu Xu; Peter E. Mortimer; Itthayakorn Promputtha; Sajeewa S. N. Maharachchikumbura; Samiullah Khan; Samantha C. Karunarathna

This paper provides illustrated descriptions of micro-fungi newly found on Pandanaceae in China and Thailand. The fungi are accommodated in 31 families. New taxa described include a new family, seven new genera, 65 new species, 16 previously known species. A new family: Malaysiascaceae (Glomerellales). New genera are Acremoniisimulans (Plectosphaerellaceae), Pandanaceomyces, Pseudoachroiostachy (Nectriaceae), Pseudohyaloseta (Niessliaceae), Pseudoornatispora (Stachybotriaceae) and Yunnanomyces (Sympoventuriaceae). New species are Acremoniisimulans thailandensis, Beltrania krabiensis, Beltraniella pandanicola, B. thailandicus, Canalisporium krabiense, C. thailandensis, Clonostachys krabiensis, Curvularia chonburiensis, C. pandanicola, C. thailandicum, C. xishuangbannaensis, Cylindrocladiella xishuangbannaensis, Dictyochaeta pandanicola, Dictyocheirospora nabanheensis, D. pandanicola, D. xishuangbannaensis, Dictyosporium appendiculatum, Di. guttulatum, Di. hongkongensis, Di. krabiense, Di. pandanicola, Distoseptispora thailandica, D. xishuangbannaensis, Helicoma freycinetiae, Hermatomyces biconisporus, Lasiodiplodia chonburiensis, L. pandanicola, Lasionectria krabiense, Menisporopsis pandanicola, Montagnula krabiensis, Musicillium pandanicola, Neofusicoccum pandanicola, Neohelicomyces pandanicola, Neooccultibambusa thailandensis, Neopestalotiopsis chiangmaiensis, N. pandanicola, N. phangngaensis, Pandanaceomyces krabiensis, Paracylindrocarpon nabanheensis, P. pandanicola, P. xishuangbannaensis, Parasarcopodium hongkongensis, Pestalotiopsis krabiensis, P. pandanicola, Polyplosphaeria nabanheensis, P. pandanicola, P. xishuangbannaensis, Pseudoachroiostachys krabiense, Pseudoberkleasmium pandanicola, Pseudochaetosphaeronema pandanicola, Pseudohyaloseta pandanicola, Pseudoornatispora krabiense, Pseudopithomyces pandanicola, Rostriconidium pandanicola, Sirastachys phangngaensis, Stictis pandanicola, Terriera pandanicola, Thozetella pandanicola, Tubeufia freycinetiae, T. parvispora, T. pandanicola, Vermiculariopsiella hongkongensis, Volutella krabiense, V. thailandensis and Yunnanomyces pandanicola. Previous studies of micro-fungi on Pandanaceae have not included phylogenetic support. Inspiration for this study came from the book Fungi Associated with Pandanaceae by Whitton, McKenzie and Hyde in 2012. Both studies reveal that the micro-fungi on Pandanaceae is particularly rich in hyphomycetes. All data presented herein are based on morphological examination of specimens, coupled with phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.


Saudi Journal of Biological Sciences | 2012

Agaricus subrufescens: A review

Komsit Wisitrassameewong; Samantha C. Karunarathna; Naritsada Thongklang; Rui-Lin Zhao; Philippe Callac; Serge Moukha; Cyril Férandon; Ekachai Chukeatirote; Kevin D. Hyde


Mycoscience | 2012

Agaricus flocculosipes sp. nov., a new potentially cultivatable species from the palaeotropics

Rui-Lin Zhao; Kevin D. Hyde; Dennis E. Desjardin; Olivier Raspé; Kasem Soytong; Jacques Guinberteau; Samantha C. Karunarathna; Philippe Callac

Collaboration


Dive into the Samantha C. Karunarathna's collaboration.

Top Co-Authors

Avatar

Kevin D. Hyde

Mae Fah Luang University

View shared research outputs
Top Co-Authors

Avatar

Jianchu Xu

World Agroforestry Centre

View shared research outputs
Top Co-Authors

Avatar

Peter E. Mortimer

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvin M. C. Tang

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Jun-Bo Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rui-Lin Zhao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge