Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter E. Mortimer is active.

Publication


Featured researches published by Peter E. Mortimer.


Fungal Diversity | 2013

Families of Dothideomycetes

Kevin D. Hyde; E. B. Gareth Jones; Jian Kui Liu; Hiran A. Ariyawansa; Eric Boehm; Saranyaphat Boonmee; Uwe Braun; Putarak Chomnunti; Pedro W. Crous; Dong Qin Dai; Paul Diederich; Asha J. Dissanayake; Mingkhuan Doilom; Francesco Doveri; Singang Hongsanan; Ruvishika S. Jayawardena; James D. Lawrey; Yan Mei Li; Yong Xiang Liu; Robert Lücking; Jutamart Monkai; Lucia Muggia; Matthew P. Nelsen; Ka-Lai Pang; Rungtiwa Phookamsak; Indunil C. Senanayake; Carol A. Shearer; Satinee Suetrong; Kazuaki Tanaka; Kasun M. Thambugala

Dothideomycetes comprise a highly diverse range of fungi characterized mainly by asci with two wall layers (bitunicate asci) and often with fissitunicate dehiscence. Many species are saprobes, with many asexual states comprising important plant pathogens. They are also endophytes, epiphytes, fungicolous, lichenized, or lichenicolous fungi. They occur in terrestrial, freshwater and marine habitats in almost every part of the world. We accept 105 families in Dothideomycetes with the new families Anteagloniaceae, Bambusicolaceae, Biatriosporaceae, Lichenoconiaceae, Muyocopronaceae, Paranectriellaceae, Roussoellaceae, Salsugineaceae, Seynesiopeltidaceae and Thyridariaceae introduced in this paper. Each family is provided with a description and notes, including asexual and asexual states, and if more than one genus is included, the type genus is also characterized. Each family is provided with at least one figure-plate, usually illustrating the type genus, a list of accepted genera, including asexual genera, and a key to these genera. A phylogenetic tree based on four gene combined analysis add support for 64 of the families and 22 orders, including the novel orders, Dyfrolomycetales, Lichenoconiales, Lichenotheliales, Monoblastiales, Natipusillales, Phaeotrichales and Strigulales. The paper is expected to provide a working document on Dothideomycetes which can be modified as new data comes to light. It is hoped that by illustrating types we provide stimulation and interest so that more work is carried out in this remarkable group of fungi.


Fungal Diversity | 2015

Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species

Jian Kui Liu; Kevin D. Hyde; E. B. Gareth Jones; Hiran A. Ariyawansa; Darbhe J. Bhat; Saranyaphat Boonmee; Sajeewa S. N. Maharachchikumbura; Eric H. C. McKenzie; Rungtiwa Phookamsak; Chayanard Phukhamsakda; Belle Damodara Shenoy; Mohamed A. Abdel-Wahab; Bart Buyck; Jie Chen; K. W. Thilini Chethana; Chonticha Singtripop; Dong Qin Dai; Yu Cheng Dai; Dinushani A. Daranagama; Asha J. Dissanayake; Mingkwan Doilom; Melvina J. D’souza; Xin Lei Fan; Ishani D. Goonasekara; Kazuyuki Hirayama; Sinang Hongsanan; Subashini C. Jayasiri; Ruvishika S. Jayawardena; Samantha C. Karunarathna; Wen-Jing Li

This paper is a compilation of notes on 110 fungal taxa, including one new family, 10 new genera, and 76 new species, representing a wide taxonomic and geographic range. The new family, Paradictyoarthriniaceae is introduced based on its distinct lineage in Dothideomycetes and its unique morphology. The family is sister to Biatriosporaceae and Roussoellaceae. The new genera are Allophaeosphaeria (Phaeosphaeriaceae), Amphibambusa (Amphisphaeriaceae), Brunneomycosphaerella (Capnodiales genera incertae cedis), Chaetocapnodium (Capnodiaceae), Flammeascoma (Anteagloniaceae), Multiseptospora (Pleosporales genera incertae cedis), Neogaeumannomyces (Magnaporthaceae), Palmiascoma (Bambusicolaceae), Paralecia (Squamarinaceae) and Sarimanas (Melanommataceae). The newly described species are the Ascomycota Aliquandostipite manochii, Allophaeosphaeria dactylidis, A. muriformia, Alternaria cesenica, Amphibambusa bambusicola, Amphisphaeria sorbi, Annulohypoxylon thailandicum, Atrotorquata spartii, Brunneomycosphaerella laburni, Byssosphaeria musae, Camarosporium aborescentis, C. aureum, C. frutexensis, Chaetocapnodium siamensis, Chaetothyrium agathis, Colletotrichum sedi, Conicomyces pseudotransvaalensis, Cytospora berberidis, C. sibiraeae, Diaporthe thunbergiicola, Diatrype palmicola, Dictyosporium aquaticum, D. meiosporum, D. thailandicum, Didymella cirsii, Dinemasporium nelloi, Flammeascoma bambusae, Kalmusia italica, K. spartii, Keissleriella sparticola, Lauriomyces synnematicus, Leptosphaeria ebuli, Lophiostoma pseudodictyosporium, L. ravennicum, Lophiotrema eburnoides, Montagnula graminicola, Multiseptospora thailandica, Myrothecium macrosporum, Natantispora unipolaris, Neogaeumannomyces bambusicola, Neosetophoma clematidis, N. italica, Oxydothis atypica, Palmiascoma gregariascomum, Paraconiothyrium nelloi, P. thysanolaenae, Paradictyoarthrinium tectonicola, Paralecia pratorum, Paraphaeosphaeria spartii, Pestalotiopsis digitalis, P. dracontomelon, P. italiana, Phaeoisaria pseudoclematidis, Phragmocapnias philippinensis, Pseudocamarosporium cotinae, Pseudocercospora tamarindi, Pseudotrichia rubriostiolata, P. thailandica, Psiloglonium multiseptatum, Saagaromyces mangrovei, Sarimanas pseudofluviatile, S. shirakamiense, Tothia spartii, Trichomerium siamensis, Wojnowicia dactylidicola, W. dactylidis and W. lonicerae. The Basidiomycota Agaricus flavicentrus, A. hanthanaensis, A. parvibicolor, A. sodalis, Cantharellus luteostipitatus, Lactarius atrobrunneus, L. politus, Phylloporia dependens and Russula cortinarioides are also introduced. Epitypifications or reference specimens are designated for Hapalocystis berkeleyi, Meliola tamarindi, Pallidocercospora acaciigena, Phaeosphaeria musae, Plenodomus agnitus, Psiloglonium colihuae, P. sasicola and Zasmidium musae while notes and/or new sequence data are provided for Annulohypoxylon leptascum, A. nitens, A. stygium, Biscogniauxia marginata, Fasciatispora nypae, Hypoxylon fendleri, H. monticulosum, Leptosphaeria doliolum, Microsphaeropsis olivacea, Neomicrothyrium, Paraleptosphaeria nitschkei, Phoma medicaginis and Saccotheciaceae. A full description of each species is provided with light micrographs (or drawings). Molecular data is provided for 90 taxa and used to generate phylogenetic trees to establish a natural classification for species.


Fungal Diversity | 2014

One stop shop: backbones trees for important phytopathogenic genera: I (2014)

Kevin D. Hyde; R. Henrik Nilsson; S. Aisyah Alias; Hiran A. Ariyawansa; Jaime E. Blair; Lei Cai; Arthur W.A.M. de Cock; Asha J. Dissanayake; Sally L. Glockling; Ishani D. Goonasekara; Michał Gorczak; Matthias Hahn; Ruvishika S. Jayawardena; Jan A. L. van Kan; Matthew H. Laurence; C. André Lévesque; Xinghong Li; Jian-Kui Liu; Sajeewa S. N. Maharachchikumbura; Dimuthu S. Manamgoda; Frank N. Martin; Eric H. C. McKenzie; Alistair R. McTaggart; Peter E. Mortimer; Prakash V. R. Nair; Julia Pawłowska; Tara L. Rintoul; Roger G. Shivas; Christoffel F. J. Spies; Brett A. Summerell

Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper.


Fungal Diversity | 2014

Revision of Phaeosphaeriaceae

Rungtiwa Phookamsak; Jian-Kui Liu; Eric H. C. McKenzie; Dimuthu S. Manamgoda; Hiran A. Ariyawansa; Kasun M. Thambugala; Dong-Qin Dai; Erio Camporesi; Ekachai Chukeatirote; Nalin N. Wijayawardene; Ali H. Bahkali; Peter E. Mortimer; Jianchu Xu; Kevin D. Hyde

Phaeosphaeriaceae is a large and important family in the order Pleosporales which includes economically important plant pathogens. Species may also be endophytes or saprobes on plant hosts, especially on monocotyledons (e.g., Cannaceae, Cyperaceae, Juncaceae, Poaceae); some species have also been reported on dicotyledons. The family previously accommodated 35 sexual and asexual genera and comprised more than 300 species with a range of morphological characters. The morphological characters of taxa in this family are often ambiguous and can be confused with other taxa in Leptosphaeriaceae and Montagnulaceae. Fourteen specimens of the type genera of Phaeosphaeriaceae were loaned from herbaria worldwide and were re-examined and illustrated. Fresh collections were obtained from Italy and Thailand, characterized, examined, isolated into pure culture and used to obtain molecular data. The asexual state was induced where possible on sterile bamboo pieces placed on water agar. Multigene phylogenetic analyses of ITS, LSU, SSU, RPB2 and TEF1 sequence datasets were carried out using maximum likelihood, maximum parsimony and Bayesian analysis. Molecular analyses shows that 21 genera (Amarenomyces, Ampelomyces, Chaetosphaeronema, Dematiopleospora, Entodesmium, Loratospora, Neosetophoma, Neostagonospora, Nodulosphaeria, Ophiobolus, Ophiosphaerella, Paraphoma, Parastagonospora, Phaeosphaeria, Phaeosphaeriopsis, Sclerostagonospora, Setomelanomma, Setophoma, Vrystaatia, Wojnowicia and Xenoseptoria) belong in Phaeosphaeriaceae, while seven genera (Amarenographium, Bricookea, Dothideopsella, Eudarluca, Phaeostagonospora, Scolecosporiella and Tiarospora) are included based on morphological data. Amarenomyces is reinstated and Nodulosphaeria is confirmed in Phaeosphaeriaceae. Eudarluca is distinguished from Sphaerellopsis based on its morphological characters and is typical of Phaeosphaeriaceae. ITS gene phylogenetic analysis indicates that Sphaerellopsis belongs to Leptosphaeriaceae. Ophiobolus species form a clade within Phaeosphaeriaceae while Ophiosphaerella is shown to be polyphyletic. Phaeosphaeria sensu stricto is redefined. Two new species of Phaeosphaeria and one of Phaeosphaeriopsis are introduced while the asexual states of Phaeosphaeria chiangraina and Phaeosphaeriopsis dracaenicola are reported. Scolicosporium minkeviciusii forms a sister clade with Neostagonospora and Parastagonospora in Phaeosphaeriaceae. However, Scolicosporium minkeviciusii is not the type species. Thus, the placement of Scolicosporium sensu stricto in Phaeosphaeriaceae is questionable. Phylogenetic analysis of combined ITS and LSU genes, confirm the placement of Septoriella oudemansii in Phaeosphaeriaceae. However, it is not represented by the generic type, thus the placement of Septoriella is questionable. Setophaeosphaeria is excluded from Phaeosphariaceae as the type species, Sp. hemerocallidis forms a clade at the base of Cucurbitariaceae. Wilmia clusters in Didymosphaeriaceae and is synonymized under Letendraea. Barria, Chaetoplea, Hadrospora, Lautitia, Metameris, Mixtura and Pleoseptum are excluded from Phaeosphaeriaceae based on their morphological characters. The asexual genera Mycopappus and Xenostigmina are excluded from this family based on the phylogenetic evidence; these genera form a clade close to Melanommataceae.


Fungal Diversity | 2012

Prized edible Asian mushrooms: ecology, conservation and sustainability

Peter E. Mortimer; Samantha C. Karunarathna; Qiaohong Li; Heng Gui; Xueqing Yang; Xuefei Yang; Jun He; Lei Ye; Jiayu Guo; Huili Li; Phongeun Sysouphanthong; Dequn Zhou; Jianchu Xu; Kevin D. Hyde

Mushrooms can be found in forests worldwide and have long been exploited as resources in developed economies because of their important agro-industrial, medicinal and commercial uses. For less developed countries, such as those within the Greater Mekong Subregion, wild harvesting and mushroom cultivation provides a much-needed alternative source of income for rural households. However, this has led to over-harvesting and ultimately environmental degradation in certain areas, thus management guidelines allowing for a more sustained approach to the use of wild mushrooms is required. This article addresses a selection of the most popular and highly sought after edible mushrooms from Greater Mekong Subregion: Astraeus hygrometricus, Boletus edulis, Morchella conica, Ophiocordyceps sinensis, Phlebopus portentosus, Pleurotus giganteus, Termitomyces eurhizus, Thelephora ganbajun, Tricholoma matsuake, and Tuber indicum in terms of value, ecology and conservation. The greatest threat to these and many other mushroom species is that of habitat loss and over-harvesting of wild stocks, thus, by creating awareness of these issues we wish to enable a more sustainable use of these natural products. Thus our paper provides baseline data for these fungi so that future monitoring can establish the effects of continued harvesting on mushroom populations and the related host species.


Fungal Diversity | 2014

Variation in forest soil fungal diversity along a latitudinal gradient

Ling-Ling Shi; Peter E. Mortimer; J. W. Ferry Slik; Xiaoming Zou; Jianchu Xu; Wenting Feng; Lu Qiao

In forest ecosystems, plant communities shape soil fungal communities through the provisioning of carbon. Although the variation in forest composition with latitude is well established, little is known about how soil fungal communities vary with latitude. We collected soil samples from 17 forests, along a latitudinal transect in western China. Forest types covered included boreal, temperate, subtropical and tropical forests. We used 454 pyrosequencing techniques to analyze the soil communities. These data were correlated with abiotic and biotic variables to determine which factors most strongly influenced fungal community composition. Our results indicated that temperature, latitude, and plant diversity most strongly influence soil fungal community composition. Fungal diversity patterns were unimodal, with temperate forests (mid latitude) exhibiting the greatest diversity. Furthermore, these diversity patterns indicate that fungal diversity was highest in the forest systems with the lowest tree diversity (temperate forests). Different forest systems were dominated by different fungal subgroups, ectomycorrhizal fungi dominated in boreal and temperate forests; endomycorrhizal fungi dominated in the tropical rainforests, and non-mycorrhizal fungi were best represented in subtropical forests. Our results suggest that soil fungal communities are strongly dependent on vegetation type, with fungal diversity displaying an inverse relationship to plant diversity.


Fungal Diversity | 2015

Towards a natural classification of Astrosphaeriella-like species; introducing Astrosphaeriellaceae and Pseudoastrosphaeriellaceae fam. nov and Astrosphaeriellopsis, gen. nov.

Rungtiwa Phookamsak; Chada Norphanphoun; Kazuaki Tanaka; Dong-Qin Dai; Zong-Long Luo; Jian-Kui Liu; Hong-Yan Su; Darbhe J. Bhat; Ali H. Bahkali; Peter E. Mortimer; Jianchu Xu; Kevin D. Hyde

Astrosphaeriella sensu lato is a common genus occurring on bamboo, palms and stout grasses. Species of Astrosphaeriella have been collected from various countries in tropical, subtropical or temperate regions. In Asia, species have been collected in Brunei, China, Indonesia, Japan, Philippines and Vietnam. There have been several morphological studies on Astrosphaeriella, but molecular work and phylogenetic analyses are generally lacking. Taxa included in Astrosphaeriella were characterized in three main groups 1) typical Astrosphaeriella species (sensu stricto) having carbonaceous, erumpent, conical ascostromata 2) atypical Astrosphaeriella species (sensu lato) having immersed, coriaceous ascostromata with short to long papilla and 3) lophiostoma-like species having immersed ascostromata with slit-like openings. Some of the latter Astrosphaeriella species, having slit-like openings, have been transferred to Fissuroma and Rimora in Aigialaceae. In this study five type specimens of Astrosphaeriella were loaned from herbaria worldwide and re-examined and are re-described and illustrated. Collections of Astrosphaeriella were also made in Thailand and morphologically examined. Pure cultures were obtained from single spores and used in molecular studies. The asexual morph was induced on sterile bamboo pieces placed on water agar. Phylogenetic analyses of combined LSU, SSU and TEF1 sequence data of astrosphaeriella-like species using Bayesian, Maximum parsimony (MP) and Randomized Accelerated Maximum Likelihood (RAxML) analyses were carried out. Phylogenetic analyses show that species of Astrosphaeriella can be distinguished in at least three families. Species of Astrosphaeriellasensu stricto with erumpent, carbonaceous ascostromata, form a strongly supported clade with Pteridiospora species and a new family, Astrosphaeriellaceae, is introduced to accommodate these taxa. The genera are revised and Astrosphaeriella bambusae, A. neofusispora, A. neostellata, A. thailandica, A. thysanolaenae and Pteridiospora chiangraiensis are introduced as new species. Astrosphaeriella exorrhiza is reported on a dead stem of Thysanolaena maxima and is the first record for Thailand. Reference specimens for A. fusispora and A. tornata are designated to stabilize the taxonomy of Astrosphaeriella. The coelomycetous asexual morph of A. bambusae is reported and forms hyaline, globose to subglobose, aseptate conidia. Species of Astrosphaeriellasensu lato with immersed, coriaceous ascostromata, with short to long papilla and striate ascospores, form a sister clade with Tetraplosphaeriaceae. The genus Pseudoastrosphaeriella is introduced to accommodate some of these taxa with three new species and three new combinations, viz. P. aequatoriensis, P. africana, P. bambusae, P. longicolla, P. papillata and P. thailandensis. A new family Pseudoastrosphaeriellaceae is introduced to accommodate this presently monotypic lineage comprising Pseudoastrosphaeriella. The asexual morph of P. thailandensis is described. Astrosphaeriella bakeriana forms a distinct clade basal to Aigialaceae. Astrosphaeriella bakeriana is excluded from Astrosphaeriella and a new genus Astrosphaeriellopsis, placed in Dothideomycetes genera incertae sedis, is introduced to accommodate this taxon. Fissuroma aggregata (Aigialaceae) is re-visited and is shown to be a cryptic species. Three new species of Fissuroma and a new combination are introduced based on morphology and phylogeny viz. F. bambusae, F. fissuristoma, F. neoaggregata and F. thailandicum. The asexual morph of Fissuroma bambusae is also reported.


Scientific Reports | 2015

Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change

Hong-Lei Li; Wei Wang; Peter E. Mortimer; Rui-Qi Li; De-Zhu Li; Kevin D. Hyde; Jianchu Xu; Douglas E. Soltis; Zhi-Duan Chen

Nitrogen is fundamental to all life forms and is also one of the most limiting of nutrients for plant growth. Several clades of angiosperms have developed symbiotic relationships with actinorhizal bacteria that fix atmospheric nitrogen and increase access to this nutrient. However, the evolutionary patterns of actinorhizal nitrogen-fixing symbioses remain unclear to date. Furthermore the underlying environmental pressures that led to the gain of symbiotic actinorhizal nitrogen fixation have never been investigated. Here, we present the most comprehensive genus-level phylogenetic analysis of the nitrogen-fixing angiosperms based on three plastid loci. We found that actinorhizal nitrogen-fixing species are distributed in nine distinct lineages. By dating the branching events, we determined that seven actinorhizal nitrogen-fixing lineages originated during the Late Cretaceous, and two more emerged during the Eocene. We put forward a hypothesis that multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms may have been associated with increased global temperatures and high levels of atmospheric carbon dioxide during these two time periods, as well as the availability of open habitats with high light conditions. Our nearly complete genus-level time-tree for the nitrogen-fixing clade is a significant advance in understanding the evolutionary and ecological background of this important symbiosis between plants and bacteria.


Environmental Modelling and Software | 2016

Climate modelling for agroforestry species selection in Yunnan Province, China

Sailesh Ranjitkar; Nani Maiya Sujakhu; Yang Lu; Qing Wang; Mingcheng Wang; Jun He; Peter E. Mortimer; Jianchu Xu; Roeland Kindt; Robert J. Zomer

Changing climate is likely to impact on both tree species and agroforestry systems in a variety of ways. A multi-model ensemble approach based on ecological niche modelling was used to understand the impact of climate on distribution of agroforestry trees in Yunnan Province of China. Future changes in distribution of 10 agroforestry tree species were projected using an ensemble of climate projections derived from the results of 19 Earth System Models provided by the Coupled Model Inter-comparison Project-Phase 5. Our model explained suitable habitat, and identified potential locations for mixed agroforestry using selected species. The model suggested west and southwest Yunnan as important location for tea and alder-based agroforestry, while southern parts of Yunnan are better suited for tea and hog plum, and northern parts could support walnut-based agroforestry options. Agroforestry is an important adaptation option for climate change, which could benefiting farmers and enhancing environmental conservation and restoration of the landscape. Display Omitted The ensemble model shows where we are most certain that the species is suitable.The tuning procedure with weighted AUC chose a specific number of best models for ensemble.Based on sensitivity analysis of spatially nested predictions where all sub-models agree that the species is suitable.A multi-model ensemble approach identified suitable habitat for agroforestry tree species.Mixed agroforestry choices for future climate recommended using consensus map outputs.


Cryptogamie Mycologie | 2014

An Exciting Novel Member of Lentitheciaceae in Italy from Clematis Vitalba

Dhanushka N. Wanasinghe; E. B. Gareth Jones; Erio Camporesi; Saranyaphat Boonmee; Hiran A. Ariyawansa; Nalin N. Wijayawardene; Peter E. Mortimer; Jianchu Xu; Jun-Bo Yang; Kevin D. Hyde

Abstract Dothideomycetes with muriform ascospores, were previously placed in family Pleosporaceae, but they are not a monophyletic group, and can be placed across a range of orders and families. In this study an interesting saprobic ascomycete was isolated from Clematis vitalba which was collected in Italy. The species has unique characters and we introduced the taxon as a new genus and species within Lentitheciaceae, The conclusions are drawn from morphology and, LSU, SSU, EF1-&agr; and RPB2 combined sequence analyses. Maximum parsimony (MP), maximum likelihood (ML) and Mr Bayes phylogenetic analysis all support this being a distinct genus within the Lentitheciaceae. It is distinguished from other genera of this family in having muriform ascospores whose central cells have longitudinal septa and light end cells, and ascomata with a thick peridium and a short neck. The new genus is compared with similar genera in the Lentitheciaceae and a comprehensive description, and micrographs are provided. The cultures were obtained via single ascospore isolation, and the asexual state was also established.

Collaboration


Dive into the Peter E. Mortimer's collaboration.

Top Co-Authors

Avatar

Kevin D. Hyde

Mae Fah Luang University

View shared research outputs
Top Co-Authors

Avatar

Jianchu Xu

World Agroforestry Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun-Bo Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Alvin M. C. Tang

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge