Samantha J. Butler
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samantha J. Butler.
Neuron | 1999
Adela Augsburger; Anita Schuchardt; Sally G. Hoskins; Jane Dodd; Samantha J. Butler
During spinal cord development, commissural (C) neurons, located near the dorsal midline, send axons ventrally and across the floor plate (FP). The trajectory of these axons toward the FP is guided in part by netrins. The mechanisms that guide the early phase of C axon extension, however, have not been resolved. We show that the roof plate (RP) expresses a diffusible activity that repels C axons and orients their growth within the dorsal spinal cord. Bone morphogenetic proteins (BMPs) appear to act as RP-derived chemorepellents that guide the early trajectory of the axons of C neurons in the developing spinal cord: BMP7 mimics the RP repellent activity for C axons in vitro, can act directly to collapse C growth cones, and appears to serve an essential function in RP repulsion of C axons.
Neuron | 2003
Samantha J. Butler; Jane Dodd
During spinal cord development, commissural neurons extend their axons ventrally, away from the roof plate. The roof plate is the source of a diffusible repellent that orients commissural axons in vitro and, thus, may regulate the trajectory of commissural axons in vivo. Of three Bmps expressed in the roof plate, BMP7, but not BMP6 or GDF7, mimics the roof plate activity in vitro. We show here that expression of both Bmp7 and Gdf7 by roof plate cells is required for the fidelity of commissural axon growth in vivo. We also demonstrate that BMP7 and GDF7 heterodimerize in vitro and that, under these conditions, GDF7 enhances the axon-orienting activity of BMP7. Our findings suggest that a GDF7:BMP7 heterodimer functions as a roof plate-derived repellent that establishes the initial ventral trajectory of commissural axons.
Development | 2008
Ken Yamauchi; Keith D. Phan; Samantha J. Butler
The finding that morphogens, signalling molecules that specify cell identity, also act as axon guidance molecules has raised the possibility that the mechanisms that establish neural cell fate are also used to assemble neuronal circuits. It remains unresolved, however, how cells differentially transduce the cell fate specification and guidance activities of morphogens. To address this question, we have examined the mechanism by which the Bone morphogenetic proteins (BMPs) guide commissural axons in the developing spinal cord. In contrast to studies that have suggested that morphogens direct axon guidance decisions using non-canonical signal transduction factors, our results indicate that canonical components of the BMP signalling pathway, the type I BMP receptors (BMPRs), are both necessary and sufficient to specify the fate of commissural neurons and guide their axonal projections. However, whereas the induction of cell fate is a shared property of both type I BMPRs, axon guidance is chiefly mediated by only one of the type I BMPRs, BMPRIB. Taken together, these results indicate that the diverse activities of BMP morphogens can be accounted for by the differential use of distinct components of the canonical BMPR complex.
The Journal of Neuroscience | 2010
Keith D. Phan; Virginia M. Hazen; Michele Frendo; Zhengping Jia; Samantha J. Butler
Commissural spinal axons extend away from the roof plate (RP) in response to a chemorepellent mediated by the bone morphogenetic proteins (BMPs). Previous studies have focused on the ability of commissural axons to translate a spatial gradient of BMPs into directional information in vitro. However, a notable feature of this system in vivo is that the gradient of BMPs is thought to act from behind the commissural cell bodies, making it possible for the BMPs to have a continued effect on commissural axons as they grow away from the RP. Here, we demonstrate that BMPs activate the cofilin regulator Lim domain kinase 1 (Limk1) to control the rate of commissural axon extension in the dorsal spinal cord. By modulating Limk1 activity in both rodent and chicken commissural neurons, the rate of axon growth can either be stalled or accelerated. Altering the activation state of Limk1 also influences subsequent guidance decisions: accelerated axons make rostrocaudal projection errors while navigating their intermediate target, the floor plate. These results suggest that guidance cues can specify information about the rate of growth, to ensure that axons reach subsequent signals either at particular times or speeds during development.
PLOS ONE | 2011
Keith D. Phan; Louis-Philippe Croteau; Joseph Wai Keung Kam; Artur Kania; Jean-François Cloutier; Samantha J. Butler
Dcc is the key receptor that mediates attractive responses of axonal growth cones to netrins, a family of axon guidance cues used throughout evolution. However, a Dcc homolog has not yet been identified in the chicken genome, raising the possibility that Dcc is not present in avians. Here we show that the closely related family member neogenin may functionally substitute for Dcc in the developing chicken spinal cord. The expression pattern of chicken neogenin in the developing spinal cord is a composite of the distribution patterns of both rodent Dcc and neogenin. Moreover, whereas the loss of mouse neogenin has no effect on the trajectory of commissural axons, removing chicken neogenin by RNA interference results in a phenotype similar to the functional inactivation of Dcc in mouse. Taken together, these data suggest that the chick neogenin is functionally equivalent to rodent Dcc.
Developmental Biology | 2012
Virginia M. Hazen; M.G. Andrews; Lieve Umans; E B Crenshaw; An Zwijsen; Samantha J. Butler
Bone Morphogenetic Proteins (BMPs) have multiple activities in the developing spinal cord: they specify the identity of the dorsal-most neuronal populations and then direct the trajectories of dorsal interneuron (dI) 1 commissural axons. How are these activities decoded by dorsal neurons to result in different cellular outcomes? Our previous studies have shown that the diverse functions of the BMPs are mediated by the canonical family of BMP receptors and then regulated by specific inhibitory (I) Smads, which block the activity of a complex of Smad second messengers. However, the extent to which this complex translates the different activities of the BMPs in the spinal cord has remained unresolved. Here, we demonstrate that the receptor-activated (R) Smads, Smad1 and Smad5 play distinct roles mediating the abilities of the BMPs to direct cell fate specification and axon outgrowth. Smad1 and Smad5 occupy spatially distinct compartments within the spinal cord, with Smad5 primarily associated with neural progenitors and Smad1 with differentiated neurons. Consistent with this expression profile, loss of function experiments in mouse embryos reveal that Smad5 is required for the acquisition of dorsal spinal neuron identities whereas Smad1 is critical for the regulation of dI1 axon outgrowth. Thus the R-Smads, like the I-Smads, have discrete roles mediating BMP-dependent cellular processes during spinal interneuron development.
Stem Cells | 2014
Eve Kandyba; Virginia M. Hazen; Agnieszka Kobielak; Samantha J. Butler; Krzysztof Kobielak
Hair follicles (HFs) are regenerative miniorgans that offer a highly informative model system to study the regulatory mechanisms of hair follicle stem cells (hfSCs) homeostasis and differentiation. Bone morphogenetic protein (BMP) signaling is key in both of these processes, governing hfSCs quiescence in the bulge and differentiation of matrix progenitors. However, whether canonical or noncanonical pathways of BMP signaling are responsible for these processes remains unresolved. Here, we conditionally ablated two canonical effectors of BMP signaling, Smad1 and Smad5 during hair morphogenesis and postnatal cycling in mouse skin. Deletion of Smad1 and Smad5 (dKO) in the epidermis during morphogenesis resulted in neonatal lethality with lack of visible whiskers. Interestingly, distinct patterns of phospho‐Smads (pSmads) activation were detected with pSmad8 restricted to epidermis and pSmad1 and pSmad5 exclusively activated in HFs. Engraftment of dKO skin revealed retarded hair morphogenesis and failure to differentiate into visible hair. The formation of the prebulge and bulge reservoir for quiescent hfSCs was precluded in dKO HFs which remained in prolonged anagen. Surprisingly, in postnatal telogen HFs, pSmad8 expression was no longer limited to epidermis and was also present in dKO bulge hfSCs and matrix progenitors. Although pSmad8 activity alone could not prevent dKO hfSCs precocious anagen activation, it sustained efficient postnatal differentiation and regeneration of visible hairs. Together, our data suggest a pivotal role for canonical BMP signaling demonstrating distinguished nonoverlapping function of pSmad8 with pSmad1 and pSmad5 in hfSCs regulation and hair morphogenesis but a redundant role in adult hair progenitors differentiation. Stem Cells 2014;32:534–547
Developmental Biology | 2011
Virginia M. Hazen; Keith D. Phan; S. Hudiburgh; Samantha J. Butler
The roof plate resident BMPs have sequential functions in the developing spinal cord, establishing cell fate and orienting axonal trajectories. These activities are, however, restricted to the dI1-dI3 neurons in the most dorsal region of the spinal cord. What limits the extent of the action of the BMPs to these neurons? To address this question, we have examined both the distribution of the inhibitory Smads (I-Smads), Smad6 and Smad7 in the spinal cord and the consequence of ectopically expressing the I-Smads in chicken embryos. Our studies suggest that the I-Smads function in vivo to restrict the action of BMP signaling in the dorsal spinal cord. Moreover, the I-Smads have distinct roles in regulating the diverse activities of the BMPs. Thus, the ectopic expression of Smad7 suppresses the dI1 and dI3 neural fates and concomitantly increases the number of dI4-dI6 spinal neurons. In contrast, Smad6 most potently functions to block dI1 axon outgrowth. Taken together, these experiments suggest that the I-Smads have distinct roles in spatially limiting the response of cells to BMP signaling.
Development | 2013
Ken Yamauchi; Supraja G. Varadarajan; Joseph E. Li; Samantha J. Butler
Bone morphogenetic proteins (BMPs) have unexpectedly diverse activities establishing different aspects of dorsal neural circuitry in the developing spinal cord. Our recent studies have shown that, in addition to spatially orienting dorsal commissural (dI1) axons, BMPs supply ‘temporal’ information to commissural axons to specify their rate of growth. This information ensures that commissural axons reach subsequent signals at particular times during development. However, it remains unresolved how commissural neurons specifically decode this activity of BMPs to result in their extending axons at a specific speed through the dorsal spinal cord. We have addressed this question by examining whether either of the type I BMP receptors (Bmpr), BmprIa and BmprIb, have a role controlling the rate of commissural axon growth. BmprIa and BmprIb exhibit a common function specifying the identity of dorsal cell fate in the spinal cord, whereas BmprIb alone mediates the ability of BMPs to orient axons. Here, we show that BmprIb, and not BmprIa, is additionally required to control the rate of commissural axon extension. We have also determined the intracellular effector by which BmprIb regulates commissural axon growth. We show that BmprIb has a novel role modulating the activity of the actin-severing protein cofilin. These studies reveal the mechanistic differences used by distinct components of the canonical Bmpr complex to mediate the diverse activities of the BMPs.
Developmental Biology | 2015
Samantha J. Butler; Marianne E. Bronner
During vertebrate development, the central (CNS) and peripheral nervous systems (PNS) arise from the neural plate. Cells at the margin of the neural plate give rise to neural crest cells, which migrate extensively throughout the embryo, contributing to the majority of neurons and all of the glia of the PNS. The rest of the neural plate invaginates to form the neural tube, which expands to form the brain and spinal cord. The emergence of molecular cloning techniques and identification of fluorophores like Green Fluorescent Protein (GFP), together with transgenic and electroporation technologies, have made it possible to easily visualize the cellular and molecular events in play during nervous system formation. These lineage-tracing techniques have precisely demonstrated the migratory pathways followed by neural crest cells and increased knowledge about their differentiation into PNS derivatives. Similarly, in the spinal cord, lineage-tracing techniques have led to a greater understanding of the regional organization of multiple classes of neural progenitor and post-mitotic neurons along the different axes of the spinal cord and how these distinct classes of neurons assemble into the specific neural circuits required to realize their various functions. Here, we review how both classical and modern lineage and marker analyses have expanded our knowledge of early peripheral nervous system and spinal cord development.