Samantha L. Eaton
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samantha L. Eaton.
Journal of General Virology | 2002
Nora Hunter; James Foster; Angela Chong; Sandra McCutcheon; David Parnham; Samantha L. Eaton; Calum MacKenzie; Fiona Houston
Attempts to detect infectivity in the blood of humans and animals affected with transmissible spongiform encephalopathies (TSEs or prion diseases) have often been inconclusive because of the limitations of cross-species bioassays and the small volumes of blood that can be injected by the intracerebral route. A model has been developed for the experimental study of TSE transmission by blood transfusion using sheep experimentally infected with bovine spongiform encephalopathy (BSE) or natural scrapie as donors and susceptible scrapie-free sheep as recipients. Donors and recipients of the same species greatly increase the sensitivity of the bioassay and in sheep large volumes of blood can be injected by the intravenous (i.v.) route. Transmission of BSE to a single animal using this approach was reported recently. This study confirms this result with a second transmission of BSE and four new cases of transmission of natural scrapie. Positive transmissions occurred with blood taken at pre-clinical and clinical stages of infection. Initial studies indicate that following such infection by the i.v. route, deposition of the abnormal prion protein isoform, PrP(Sc), in peripheral tissues may be much more limited than is seen following oral infection. These results confirm the risks of TSE infection via blood products and suggest that the measures taken to restrict the use of blood in the UK have been fully justified.
PLOS ONE | 2013
Samantha L. Eaton; Sarah L. Roche; Maica Llavero Hurtado; Karla Oldknow; Colin Farquharson; Thomas H. Gillingwater; Thomas M. Wishart
Western blotting has been a key technique for determining the relative expression of proteins within complex biological samples since the first publications in 1979. Recent developments in sensitive fluorescent labels, with truly quantifiable linear ranges and greater limits of detection, have allowed biologists to probe tissue specific pathways and processes with higher resolution than ever before. However, the application of quantitative Western blotting (QWB) to a range of healthy tissues and those from degenerative models has highlighted a problem with significant consequences for quantitative protein analysis: how can researchers conduct comparative expression analyses when many of the commonly used reference proteins (e.g. loading controls) are differentially expressed? Here we demonstrate that common controls, including actin and tubulin, are differentially expressed in tissues from a wide range of animal models of neurodegeneration. We highlight the prevalence of such alterations through examination of published “–omics” data, and demonstrate similar responses in sensitive QWB experiments. For example, QWB analysis of spinal cord from a murine model of Spinal Muscular Atrophy using an Odyssey scanner revealed that beta-actin expression was decreased by 19.3±2% compared to healthy littermate controls. Thus, normalising QWB data to β-actin in these circumstances could result in ‘skewing’ of all data by ∼20%. We further demonstrate that differential expression of commonly used loading controls was not restricted to the nervous system, but was also detectable across multiple tissues, including bone, fat and internal organs. Moreover, expression of these “control” proteins was not consistent between different portions of the same tissue, highlighting the importance of careful and consistent tissue sampling for QWB experiments. Finally, having illustrated the problem of selecting appropriate single protein loading controls, we demonstrate that normalisation using total protein analysis on samples run in parallel with stains such as Coomassie blue provides a more robust approach.
Journal of Clinical Investigation | 2014
Thomas M. Wishart; Chantal A. Mutsaers; Markus Riessland; Michell M. Reimer; Gillian Hunter; Marie L. Hannam; Samantha L. Eaton; Heidi R. Fuller; Sarah L. Roche; Eilidh Somers; Robert Morse; Philip J. Young; Douglas J. Lamont; Matthias Hammerschmidt; Anagha Joshi; Peter Hohenstein; Glenn E. Morris; Simon H. Parson; Paul Skehel; Thomas Becker; Iain M. Robinson; Catherina G. Becker; Brunhilde Wirth; Thomas H. Gillingwater
The autosomal recessive neurodegenerative disease spinal muscular atrophy (SMA) results from low levels of survival motor neuron (SMN) protein; however, it is unclear how reduced SMN promotes SMA development. Here, we determined that ubiquitin-dependent pathways regulate neuromuscular pathology in SMA. Using mouse models of SMA, we observed widespread perturbations in ubiquitin homeostasis, including reduced levels of ubiquitin-like modifier activating enzyme 1 (UBA1). SMN physically interacted with UBA1 in neurons, and disruption of Uba1 mRNA splicing was observed in the spinal cords of SMA mice exhibiting disease symptoms. Pharmacological or genetic suppression of UBA1 was sufficient to recapitulate an SMA-like neuromuscular pathology in zebrafish, suggesting that UBA1 directly contributes to disease pathogenesis. Dysregulation of UBA1 and subsequent ubiquitination pathways led to β-catenin accumulation, and pharmacological inhibition of β-catenin robustly ameliorated neuromuscular pathology in zebrafish, Drosophila, and mouse models of SMA. UBA1-associated disruption of β-catenin was restricted to the neuromuscular system in SMA mice; therefore, pharmacological inhibition of β-catenin in these animals failed to prevent systemic pathology in peripheral tissues and organs, indicating fundamental molecular differences between neuromuscular and systemic SMA pathology. Our data indicate that SMA-associated reduction of UBA1 contributes to neuromuscular pathogenesis through disruption of ubiquitin homeostasis and subsequent β-catenin signaling, highlighting ubiquitin homeostasis and β-catenin as potential therapeutic targets for SMA.
Journal of General Virology | 2008
Michele Angelo Di Bari; Francesca Chianini; Gabriele Vaccari; Elena Esposito; Michela Conte; Samantha L. Eaton; Scott L. Hamilton; Jeanie Finlayson; Philip Steele; Mark P. Dagleish; H.W. Reid; Moira Bruce; Martin Jeffrey; Umberto Agrimi; Romolo Nonno
Despite intensive studies on sheep scrapie, a number of questions remain unanswered, such as the natural mode of transmission and the amount of infectivity which accumulates in edible tissues at different stages of scrapie infection. Studies using the mouse model proved to be useful for recognizing scrapie strain diversity, but the low sensitivity of mice to some natural scrapie isolates hampered further investigations. To investigate the sensitivity of bank voles (Myodes glareolus) to scrapie, we performed end-point titrations from two unrelated scrapie sources. Similar titres [10(5.5) ID50 U g(-1) and 10(5.8) ID50 U g(-1), both intracerebrally (i.c.)] were obtained, showing that voles can detect infectivity up to 3-4 orders of magnitude lower when compared with laboratory mice. We further investigated the relationships between PrPSc molecular characteristics, strain and prion titre in the brain and tonsil of the same scrapie-affected sheep. We found that protease-resistant PrPSc fragments (PrPres) from brain and tonsil had different molecular features, but induced identical disease phenotypes in voles. The infectivity titre of the tonsil estimated by incubation time assay was 10(4.8) i.c. ID50 U g(-1), i.e. fivefold less than the brain. This compared well with the relative PrPres content, which was 8.8-fold less in tonsil than in brain. Our results suggest that brain and tonsil harboured the same prion strain showing different glycoprofiles in relation to the different cellular/tissue types in which it replicated, and that a PrPSc-based estimate of scrapie infectivity in sheep tissues could be achieved by combining sensitive PrPres detection methods and bioassay in voles.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Francesca Chianini; Natalia Fernández-Borges; Enric Vidal; Louise Gibbard; Belén Pintado; Jorge de Castro; Suzette A. Priola; Scott L. Hamilton; Samantha L. Eaton; Jeanie Finlayson; Yvonne Pang; Philip Steele; Hugh W. Reid; Mark P. Dagleish; Joaquín Castilla
The ability of prions to infect some species and not others is determined by the transmission barrier. This unexplained phenomenon has led to the belief that certain species were not susceptible to transmissible spongiform encephalopathies (TSEs) and therefore represented negligible risk to human health if consumed. Using the protein misfolding cyclic amplification (PMCA) technique, we were able to overcome the species barrier in rabbits, which have been classified as TSE resistant for four decades. Rabbit brain homogenate, either unseeded or seeded in vitro with disease-related prions obtained from different species, was subjected to serial rounds of PMCA. De novo rabbit prions produced in vitro from unseeded material were tested for infectivity in rabbits, with one of three intracerebrally challenged animals succumbing to disease at 766 d and displaying all of the characteristics of a TSE, thereby demonstrating that leporids are not resistant to prion infection. Material from the brain of the clinically affected rabbit containing abnormal prion protein resulted in a 100% attack rate after its inoculation in transgenic mice overexpressing rabbit PrP. Transmissibility to rabbits (>470 d) has been confirmed in 2 of 10 rabbits after intracerebral challenge. Despite rabbits no longer being able to be classified as resistant to TSEs, an outbreak of “mad rabbit disease” is unlikely.
Veterinary Research | 2012
Lorenzo González; Martin Jeffrey; Mark P. Dagleish; Wilfred Goldmann; Sílvia Sisó; Samantha L. Eaton; Stuart Martin; Jeanie Finlayson; Paula Stewart; Philip Steele; Yvonne Pang; Scott Hamilton; Hugh W. Reid; Francesca Chianini
It has long been established that the sheep Prnp genotype influences the susceptibility to scrapie, and some studies suggest that it can also determine several aspects of the disease phenotype. Other studies, however, indicate that the source of infection may also play a role in such phenotype. To address this question an experiment was set up in which either of two different natural scrapie sources, AAS from AA136 Suffolk and VVC from VV136 Cheviot sheep, were inoculated into AA136, VA136 and VV136 sheep recipients (n = 52). The immunohistochemical (IHC) profile of disease-associated PrP (PrPd) accumulation in the brain of recipient sheep was highly consistent upon codon 136 homologous and semi-homologous transmission, but could be either similar to or different from those of the inoculum donors. In contrast, the IHC profiles were highly variable upon heterologous transmission (VVC to AA136 and AAS to VV136). Furthermore, sheep of the same Prnp genotype could exhibit different survival times and PrPd profiles depending on the source of infection, and a correlation was observed between IHC and Western blot profiles. It was found that additional polymorphisms at codons 112 or 141 of AA136 recipients resulted in a delayed appearance of clinical disease or even in protection from infection. The results of this study strongly suggest that the scrapie phenotype in sheep results from a complex interaction between source, donor and recipient factors, and that the Prnp genotype of the recipient sheep does not explain the variability observed upon codon 136 heterologous transmissions, arguing for other genetic factors to be involved.
Prion | 2012
Natalia Fernández-Borges; Francesca Chianini; Hasier Eraña; Enric Vidal; Samantha L. Eaton; Belén Pintado; Jeanie Finlayson; Mark P. Dagleish; Joaquín Castilla
Each known abnormal prion protein (PrPSc) is considered to have a specific range and therefore the ability to infect some species and not others. Consequently, some species have been assumed to be prion disease resistant as no successful natural or experimental challenge infections have been reported. This assumption suggested that, independent of the virulence of the PrPSc strain, normal prion protein (PrPC) from these ‘resistant’ species could not be induced to misfold. Numerous in vitro and in vivo studies trying to corroborate the unique properties of PrPSc have been undertaken. The results presented in the article “Rabbits are not resistant to prion infection” demonstrated that normal rabbit PrPC, which was considered to be resistant to prion disease, can be misfolded to PrPSc and subsequently used to infect and transmit a standard prion disease to leporids. Using the concept of species resistance to prion disease, we will discuss the mistake of attributing species specific prion disease resistance based purely on the absence of natural cases and incomplete in vivo challenges. The BSE epidemic was partially due to an underestimation of species barriers. To repeat this error would be unacceptable, especially if present knowledge and techniques can show a theoretical risk. Now that the myth of prion disease resistance has been refuted it is time to re-evaluate, using the new powerful tools available in modern prion laboratories, whether any other species could be at risk.
Journal of General Virology | 2012
Lorenzo González; Mark P. Dagleish; Stuart Martin; Jeanie Finlayson; Sílvia Sisó; Samantha L. Eaton; Wilfred Goldmann; Janey Witz; Scott L. Hamilton; Paula Stewart; Yvonne Pang; Philip Steele; H.W. Reid; Francesca Chianini; Martin Jeffrey
Several studies have shown that transmission of natural scrapie can occur vertically and horizontally, and that variations in scrapie incidence between and within infected flocks are mostly due to differences in the proportion of sheep with susceptible and resistant PRNP genotypes. This report presents the results of a 12-year period of scrapie monitoring in a closed flock of Suffolk sheep, in which only animals of the ARQ/ARQ genotype developed disease. Among a total of 120 of these, scrapie attack rates varied between birth cohorts from 62.5 % (5/8) to 100 % (9/9), and the incidence of clinical disease among infected sheep from 88.9 % (8/9) to 100 % (in five birth cohorts). Susceptible sheep born to scrapie-infected ewes showed a slightly higher risk of becoming infected (97.2 %), produced earlier biopsy-positive results (mean 354 days) and developed disease at a younger age (median 736 days) than those born to non-infected dams (80.3 %, 451 and 782 days, respectively). Taken together, this was interpreted as evidence of maternal transmission. However, it was also observed that, for the birth cohorts with the highest incidence of scrapie (90-100 %), sheep born to infected and non-infected dams had a similar risk of developing scrapie (97.1 and 95.3 %, respectively). Compared with moderate-attack-rate cohorts (62.5-66.7 %), high-incidence cohorts had greater numbers of susceptible lambs born to infected ewes, suggesting that increased rates of horizontal transmission in these cohorts could have been due to high levels of environmental contamination caused by infected placentas.
Veterinary Parasitology | 2011
Julio Benavides; Stephen W. Maley; Yvonne Pang; J. Palarea; Samantha L. Eaton; Frank Katzer; Elisabeth A. Innes; David Buxton; Francesca Chianini
The host-pathogen interaction is as a key feature during the formation of tissue cysts of Toxoplasma gondii within intermediate hosts. In this study, we investigated whether oral infection of lambs with T. gondii oocysts may be used as an experimental model in sheep to study this interaction, with the main objective being to detect the presence and distribution of lesions and parasite within different organs at different time points after oral infection. Lambs were infected with 5 × 10(3) and 5 × 10(5) sporulated T. gondii oocysts and culled at 2, 3, 5 and 6 weeks post-infection (WPI). During the infection, rectal temperature of the animals and serological antibodies against T. gondii were monitored. The presence of inflammatory lesions and parasite were evaluated through histological and immunohistochemical methods at different organs (brain, liver, lung, heart and lymph nodes). The lambs showed no clinical signs other than fever, and lesions appeared mainly in the brain, characterized by glial foci and perivascular cuffs, and in the heart, denoted by foci of interstitial myositis. Tissue cysts and tachyzoite-like structures were observed at all time points studied in the brain, where together with the glial foci they appeared mainly in the cerebral cortex of the forebrain and in the midbrain, but also in the heart, lung and lymph nodes. This study shows that oral infection with sporulated oocysts in lambs may provide a model for investigating the host-parasite interaction in situ during the development of tissue cysts.
Journal of General Virology | 2010
Mark P. Dagleish; Scott L. Hamilton; Lorenzo González; Samantha L. Eaton; Philip Steele; Jeanie Finlayson; Sílvia Sisó; Yvonne Pang; Jill Sales; Francesca Chianini; Martin Jeffrey
Bovine spongiform encephalopathy (BSE) is acquired orally and the mechanisms involved in the absorption and transportation of infectivity across the gut wall are therefore critical. Isolated gut loops were created in lambs, massaged to remove intestinal contents (flushed) or left non-flushed, inoculated with cattle BSE homogenate and excised at different time-points. Gut loops were examined by immunohistochemistry (IHC) for disease-associated prion protein (PrP(d)), and the contents were analysed by Western blotting (WB) to determine the degradation rate of protease-resistant PrP (PrP(res)). The contents of scrapie-inoculated gut loops from a previous experiment were analysed by WB, and these in vivo digestion results were compared with those of an in vitro experiment on the same transmissible spongiform encephalopathy homogenates. BSE-inoculum-derived PrP(d) was detected by IHC in the gut lumen between 15 min and 3.5 h. It was found in the intestinal lymphatic system from 30 min onwards and was present at the highest frequency at 120 min post-inoculation. In vivo degradation of PrP(res) in the BSE inoculum had a significantly (P=0.006) different pattern compared with scrapie-derived PrP(res), with the BSE PrP(res) degrading more rapidly. However, the overall amount of degradation became similar by 120 min post-challenge. The results of the in vitro digestion experiments showed a similar pattern, although the magnitude of PrP(res) degradation was less than in the in vivo environment where absorption could also take place. BSE-derived PrP(res) is less protease resistant than scrapie PrP over a short time-course and the disappearance of detectable PrP(res) from the gut lumen results from both absorption and digestion by intestinal contents.