Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas M. Wishart is active.

Publication


Featured researches published by Thomas M. Wishart.


PLOS ONE | 2013

Total Protein Analysis as a Reliable Loading Control for Quantitative Fluorescent Western Blotting

Samantha L. Eaton; Sarah L. Roche; Maica Llavero Hurtado; Karla Oldknow; Colin Farquharson; Thomas H. Gillingwater; Thomas M. Wishart

Western blotting has been a key technique for determining the relative expression of proteins within complex biological samples since the first publications in 1979. Recent developments in sensitive fluorescent labels, with truly quantifiable linear ranges and greater limits of detection, have allowed biologists to probe tissue specific pathways and processes with higher resolution than ever before. However, the application of quantitative Western blotting (QWB) to a range of healthy tissues and those from degenerative models has highlighted a problem with significant consequences for quantitative protein analysis: how can researchers conduct comparative expression analyses when many of the commonly used reference proteins (e.g. loading controls) are differentially expressed? Here we demonstrate that common controls, including actin and tubulin, are differentially expressed in tissues from a wide range of animal models of neurodegeneration. We highlight the prevalence of such alterations through examination of published “–omics” data, and demonstrate similar responses in sensitive QWB experiments. For example, QWB analysis of spinal cord from a murine model of Spinal Muscular Atrophy using an Odyssey scanner revealed that beta-actin expression was decreased by 19.3±2% compared to healthy littermate controls. Thus, normalising QWB data to β-actin in these circumstances could result in ‘skewing’ of all data by ∼20%. We further demonstrate that differential expression of commonly used loading controls was not restricted to the nervous system, but was also detectable across multiple tissues, including bone, fat and internal organs. Moreover, expression of these “control” proteins was not consistent between different portions of the same tissue, highlighting the importance of careful and consistent tissue sampling for QWB experiments. Finally, having illustrated the problem of selecting appropriate single protein loading controls, we demonstrate that normalisation using total protein analysis on samples run in parallel with stains such as Coomassie blue provides a more robust approach.


European Journal of Neuroscience | 2004

Progressive abnormalities in skeletal muscle and neuromuscular junctions of transgenic mice expressing the Huntington's disease mutation.

Richard R. Ribchester; Derek Thomson; Nigel I. Wood; Timothy S. C. Hinks; Thomas H. Gillingwater; Thomas M. Wishart; Felipe A. Court; A. Jennifer Morton

Huntingtons disease (HD) is a neurodegenerative disorder with complex symptoms dominated by progressive motor dysfunction. Skeletal muscle atrophy is common in HD patients. Because the HD mutation is expressed in skeletal muscle as well as brain, we wondered whether the muscle changes arise from primary pathology. We used R6/2 transgenic mice for our studies. Unlike denervation atrophy, skeletal muscle atrophy in R6/2 mice occurs uniformly. Paradoxically however, skeletal muscles show age‐dependent denervation‐like abnormalities, including supersensitivity to acetylcholine, decreased sensitivity to µ‐conotoxin, and anode‐break action potentials. Morphological abnormalities of neuromuscular junctions are also present, particularly in older R6/2 mice. Severely affected R6/2 mice show a progressive increase in the number of motor endplates that fail to respond to nerve stimulation. Surprisingly, there was no constitutive sprouting of motor neurons in R6/2 muscles, even in severely atrophic muscles that showed other denervation‐like characteristics. In fact, there was an age‐dependent loss of regenerative capacity of motor neurons in R6/2 mice. Because muscle fibers appear to be released from the activity‐dependent cues that regulate membrane properties and muscle size, and motor axons and nerve terminals become impaired in their capacity to release neurotransmitter and to respond to stimuli that normally evoke sprouting and adaptive reinnervation, we speculate that in these mice there is a progressive dissociation of trophic signalling between motor neurons and skeletal muscle. However, irrespective of the cause, the abnormalities at neuromuscular junctions we report here are likely to contribute to the pathological phenotype in R6/2 mice, particularly in late stages of the disease.


Journal of Neuropathology and Experimental Neurology | 2006

Synaptic vulnerability in neurodegenerative disease.

Thomas M. Wishart; Simon H. Parson; Thomas H. Gillingwater

Abstract Recent developments in our understanding of the pathophysiological mechanisms underlying degeneration in both the central and peripheral nervous systems have highlighted the critical role that synapses play in the instigation and progression of neuronal loss. In fact, several lines of evidence suggest that previous attempts to delay the onset and progression of clinical symptoms in a broad range of neurodegenerative diseases may have been unsuccessful as a result of a failure to protect synaptic compartments. As a result, the synapse needs to be viewed as an important target for the development of novel protective treatments aimed at preventing or slowing disease progression. We summarize important findings from human studies and animal models demonstrating common synaptic vulnerability across several neurodegenerative diseases. We also discuss recent developments in our understanding of degenerative mechanisms that are known to be localized to synapses and suggest potential ways to harness this understanding to develop synaptoprotective strategies for neurodegenerative disease.


Journal of Clinical Investigation | 2014

Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy

Thomas M. Wishart; Chantal A. Mutsaers; Markus Riessland; Michell M. Reimer; Gillian Hunter; Marie L. Hannam; Samantha L. Eaton; Heidi R. Fuller; Sarah L. Roche; Eilidh Somers; Robert Morse; Philip J. Young; Douglas J. Lamont; Matthias Hammerschmidt; Anagha Joshi; Peter Hohenstein; Glenn E. Morris; Simon H. Parson; Paul Skehel; Thomas Becker; Iain M. Robinson; Catherina G. Becker; Brunhilde Wirth; Thomas H. Gillingwater

The autosomal recessive neurodegenerative disease spinal muscular atrophy (SMA) results from low levels of survival motor neuron (SMN) protein; however, it is unclear how reduced SMN promotes SMA development. Here, we determined that ubiquitin-dependent pathways regulate neuromuscular pathology in SMA. Using mouse models of SMA, we observed widespread perturbations in ubiquitin homeostasis, including reduced levels of ubiquitin-like modifier activating enzyme 1 (UBA1). SMN physically interacted with UBA1 in neurons, and disruption of Uba1 mRNA splicing was observed in the spinal cords of SMA mice exhibiting disease symptoms. Pharmacological or genetic suppression of UBA1 was sufficient to recapitulate an SMA-like neuromuscular pathology in zebrafish, suggesting that UBA1 directly contributes to disease pathogenesis. Dysregulation of UBA1 and subsequent ubiquitination pathways led to β-catenin accumulation, and pharmacological inhibition of β-catenin robustly ameliorated neuromuscular pathology in zebrafish, Drosophila, and mouse models of SMA. UBA1-associated disruption of β-catenin was restricted to the neuromuscular system in SMA mice; therefore, pharmacological inhibition of β-catenin in these animals failed to prevent systemic pathology in peripheral tissues and organs, indicating fundamental molecular differences between neuromuscular and systemic SMA pathology. Our data indicate that SMA-associated reduction of UBA1 contributes to neuromuscular pathogenesis through disruption of ubiquitin homeostasis and subsequent β-catenin signaling, highlighting ubiquitin homeostasis and β-catenin as potential therapeutic targets for SMA.


Current Biology | 2012

WldS Prevents Axon Degeneration through Increased Mitochondrial Flux and Enhanced Mitochondrial Ca2+ Buffering

Michelle A. Avery; Timothy M. Rooney; Jignesh D. Pandya; Thomas M. Wishart; Thomas H. Gillingwater; James W. Geddes; Patrick G. Sullivan; Marc R. Freeman

Wld(S) (slow Wallerian degeneration) is a remarkable protein that can suppress Wallerian degeneration of axons and synapses, but how it exerts this effect remains unclear. Here, using Drosophila and mouse models, we identify mitochondria as a key site of action for Wld(S) neuroprotective function. Targeting the NAD(+) biosynthetic enzyme Nmnat to mitochondria was sufficient to fully phenocopy Wld(S), and Wld(S) was specifically localized to mitochondria in synaptic preparations from mouse brain. Axotomy of live wild-type axons induced a dramatic spike in axoplasmic Ca(2+) and termination of mitochondrial movement-Wld(S) potently suppressed both of these events. Surprisingly, Wld(S) also promoted increased basal mitochondrial motility in axons before injury, and genetically suppressing mitochondrial motility in vivo dramatically reduced the protective effect of Wld(S). Intriguingly, purified mitochondria from Wld(S) mice exhibited enhanced Ca(2+) buffering capacity. We propose that the enhanced Ca(2+) buffering capacity of Wld(S+) mitochondria leads to increased mitochondrial motility, suppression of axotomy-induced Ca(2+) elevation in axons, and thereby suppression of Wallerian degeneration.


Human Molecular Genetics | 2010

SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy

Thomas M. Wishart; Jack P.-W. Huang; Lyndsay M. Murray; Douglas J. Lamont; Chantal A. Mutsaers; Jenny Ross; Pascal Geldsetzer; Olaf Ansorge; Kevin Talbot; Simon H. Parson; Thomas H. Gillingwater

Reduced expression of the survival motor neuron (SMN) gene causes the childhood motor neuron disease spinal muscular atrophy (SMA). Low levels of ubiquitously expressed SMN protein result in the degeneration of lower motor neurons, but it remains unclear whether other regions of the nervous system are also affected. Here we show that reduced levels of SMN lead to impaired perinatal brain development in a mouse model of severe SMA. Regionally selective changes in brain morphology were apparent in areas normally associated with higher SMN levels in the healthy postnatal brain, including the hippocampus, and were associated with decreased cell density, reduced cell proliferation and impaired hippocampal neurogenesis. A comparative proteomics analysis of the hippocampus from SMA and wild-type littermate mice revealed widespread modifications in expression levels of proteins regulating cellular proliferation, migration and development when SMN levels were reduced. This study reveals novel roles for SMN protein in brain development and maintenance and provides the first insights into cellular and molecular pathways disrupted in the brain in a severe form of SMA.


Molecular & Cellular Proteomics | 2007

Differential Proteomics Analysis of Synaptic Proteins Identifies Potential Cellular Targets and Protein Mediators of Synaptic Neuroprotection Conferred by the Slow Wallerian Degeneration (Wlds) Gene

Thomas M. Wishart; Janet M. Paterson; Duncan M Short; Sara Meredith; Kevin Robertson; Calum Sutherland; Michael A. Cousin; Mayank B. Dutia; Thomas H. Gillingwater

Non-somatic synaptic and axonal compartments of neurons are primary pathological targets in many neurodegenerative conditions, ranging from Alzheimer disease through to motor neuron disease. Axons and synapses are protected from degeneration by the slow Wallerian degeneration (Wlds) gene. Significantly the molecular mechanisms through which this spontaneous genetic mutation delays degeneration remain controversial, and the downstream protein targets of Wlds resident in non-somatic compartments remain unknown. In this study we used differential proteomics analysis to identify proteins whose expression levels were significantly altered in isolated synaptic preparations from the striatum of Wlds mice. Eight of the 16 proteins we identified as having modified expression levels in Wlds synapses are known regulators of mitochondrial stability and degeneration (including VDAC1, Aralar1, and mitofilin). Subsequent analyses demonstrated that other key mitochondrial proteins, not identified in our initial screen, are also modified in Wlds synapses. Of the non-mitochondrial proteins identified, several have been implicated in neurodegenerative diseases where synapses and axons are primary pathological targets (including DRP-2 and Rab GDP dissociation inhibitor β). In addition, we show that downstream protein changes can be identified in pathways corresponding to both Ube4b (including UBE1) and Nmnat1 (including VDAC1 and Aralar1) components of the chimeric Wlds gene, suggesting that full-length Wlds protein is required to elicit maximal changes in synaptic proteins. We conclude that altered mitochondrial responses to degenerative stimuli are likely to play an important role in the neuroprotective Wlds phenotype and that targeting proteins identified in the current study may lead to novel therapies for the treatment of neurodegenerative diseases in humans.


JCI insight | 2016

Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy

Rachael A. Powis; Evangelia Karyka; Penelope J Boyd; Julien Côme; Ross A. Jones; Yinan Zheng; Eva Szunyogova; Ewout J.N. Groen; Gillian Hunter; Derek Thomson; Thomas M. Wishart; Catherina G. Becker; Simon H. Parson; Cécile Martinat; Mimoun Azzouz; Thomas H. Gillingwater

The autosomal recessive neuromuscular disease spinal muscular atrophy (SMA) is caused by loss of survival motor neuron (SMN) protein. Molecular pathways that are disrupted downstream of SMN therefore represent potentially attractive therapeutic targets for SMA. Here, we demonstrate that therapeutic targeting of ubiquitin pathways disrupted as a consequence of SMN depletion, by increasing levels of one key ubiquitination enzyme (ubiquitin-like modifier activating enzyme 1 [UBA1]), represents a viable approach for treating SMA. Loss of UBA1 was a conserved response across mouse and zebrafish models of SMA as well as in patient induced pluripotent stem cell–derive motor neurons. Restoration of UBA1 was sufficient to rescue motor axon pathology and restore motor performance in SMA zebrafish. Adeno-associated virus serotype 9–UBA1 (AAV9-UBA1) gene therapy delivered systemic increases in UBA1 protein levels that were well tolerated over a prolonged period in healthy control mice. Systemic restoration of UBA1 in SMA mice ameliorated weight loss, increased survival and motor performance, and improved neuromuscular and organ pathology. AAV9-UBA1 therapy was also sufficient to reverse the widespread molecular perturbations in ubiquitin homeostasis that occur during SMA. We conclude that UBA1 represents a safe and effective therapeutic target for the treatment of both neuromuscular and systemic aspects of SMA.


Human Molecular Genetics | 2011

Reversible molecular pathology of skeletal muscle in spinal muscular atrophy

Chantal A. Mutsaers; Thomas M. Wishart; Douglas J. Lamont; Markus Riessland; Julia Schreml; Laura H. Comley; Lyndsay M. Murray; Simon H. Parson; Hanns Lochmüller; Brunhilde Wirth; Kevin Talbot; Thomas H. Gillingwater

Low levels of full-length survival motor neuron (SMN) protein cause the motor neuron disease, spinal muscular atrophy (SMA). Although motor neurons undoubtedly contribute directly to SMA pathogenesis, the role of muscle is less clear. We demonstrate significant disruption to the molecular composition of skeletal muscle in pre-symptomatic severe SMA mice, in the absence of any detectable degenerative changes in lower motor neurons and with a molecular profile distinct from that of denervated muscle. Functional cluster analysis of proteomic data and phospho-histone H2AX labelling of DNA damage revealed increased activity of cell death pathways in SMA muscle. Robust upregulation of voltage-dependent anion-selective channel protein 2 (Vdac2) and downregulation of parvalbumin in severe SMA mice was confirmed in a milder SMA mouse model and in human patient muscle biopsies. Molecular pathology of skeletal muscle was ameliorated in mice treated with the FDA-approved histone deacetylase inhibitor, suberoylanilide hydroxamic acid. We conclude that intrinsic pathology of skeletal muscle is an important and reversible event in SMA and also suggest that muscle proteins have the potential to act as novel biomarkers in SMA.


Nature Communications | 2011

Retinoid-independent motor neurogenesis from human embryonic stem cells reveals a medial columnar ground state

Rickie Patani; Andrew John Hollins; Thomas M. Wishart; Clare A. Puddifoot; Susana Álvarez; A. R. de Lera; David J. A. Wyllie; D. A. S. Compston; Roger A. Pedersen; Thomas H. Gillingwater; Giles E. Hardingham; Nicholas Denby Allen; Siddharthan Chandran

A major challenge in neurobiology is to understand mechanisms underlying human neuronal diversification. Motor neurons (MNs) represent a diverse collection of neuronal subtypes, displaying differential vulnerability in different human neurodegenerative diseases. The ability to manipulate cell subtype diversification is critical to establish accurate, clinically relevant in vitro disease models. Retinoid signalling contributes to caudal precursor specification and subsequent MN subtype diversification. Here we investigate the necessity for retinoic acid in motor neurogenesis from human embryonic stem cells. We show that activin/nodal signalling inhibition, followed by sonic hedgehog agonist treatment, is sufficient for MN precursor specification, which occurs even in the presence of retinoid pathway antagonists. Importantly, precursors mature into HB9/ChAT-expressing functional MNs. Furthermore, retinoid-independent motor neurogenesis results in a ground state biased to caudal, medial motor columnar identities from which a greater retinoid-dependent diversity of MNs, including those of lateral motor columns, can be selectively derived in vitro.

Collaboration


Dive into the Thomas M. Wishart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge