Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samanthi A. Perera is active.

Publication


Featured researches published by Samanthi A. Perera.


Nature Medicine | 2008

Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers.

Jeffrey A. Engelman; Liang Chen; Xiaohong Tan; Katherine Crosby; Alexander R. Guimaraes; Rabi Upadhyay; S. Michel Maira; Kate McNamara; Samanthi A. Perera; Youngchul Song; Lucian R. Chirieac; Ramneet Kaur; Angela Lightbown; Jessica Simendinger; Timothy Q. Li; Robert F. Padera; Carlos Garcia-Echeverria; Ralph Weissleder; Umar Mahmood; Lewis C. Cantley; Kwok-Kin Wong

Somatic mutations that activate phosphoinositide 3-kinase (PI3K) have been identified in the p110-α catalytic subunit (encoded by PIK3CA). They are most frequently observed in two hotspots: the helical domain (E545K and E542K) and the kinase domain (H1047R). Although the p110-α mutants are transforming in vitro, their oncogenic potential has not been assessed in genetically engineered mouse models. Furthermore, clinical trials with PI3K inhibitors have recently been initiated, and it is unknown if their efficacy will be restricted to specific, genetically defined malignancies. In this study, we engineered a mouse model of lung adenocarcinomas initiated and maintained by expression of p110-α H1047R. Treatment of these tumors with NVP-BEZ235, a dual pan–PI3K and mammalian target of rapamycin (mTOR) inhibitor in clinical development, led to marked tumor regression as shown by positron emission tomography–computed tomography, magnetic resonance imaging and microscopic examination. In contrast, mouse lung cancers driven by mutant Kras did not substantially respond to single-agent NVP-BEZ235. However, when NVP-BEZ235 was combined with a mitogen-activated protein kinase kinase (MEK) inhibitor, ARRY-142886, there was marked synergy in shrinking these Kras-mutant cancers. These in vivo studies suggest that inhibitors of the PI3K-mTOR pathway may be active in cancers with PIK3CA mutations and, when combined with MEK inhibitors, may effectively treat KRAS mutated lung cancers.


Nature | 2007

LKB1 modulates lung cancer differentiation and metastasis.

Hongbin Ji; Matthew R. Ramsey; D. Neil Hayes; Cheng Fan; Kate McNamara; Piotr Kozlowski; Chad Torrice; Michael C. Wu; Takeshi Shimamura; Samanthi A. Perera; Mei Chih Liang; Dongpo Cai; George N. Naumov; Lei Bao; Cristina M. Contreras; Danan Li; Liang Chen; Janakiraman Krishnamurthy; Jussi Koivunen; Lucian R. Chirieac; Robert F. Padera; Roderick T. Bronson; Neal I. Lindeman; David C. Christiani; Xihong Lin; Geoffrey I. Shapiro; Pasi A. Jänne; Bruce E. Johnson; Matthew Meyerson; David J. Kwiatkowski

Germline mutation in serine/threonine kinase 11 (STK11, also called LKB1) results in Peutz–Jeghers syndrome, characterized by intestinal hamartomas and increased incidence of epithelial cancers. Although uncommon in most sporadic cancers, inactivating somatic mutations of LKB1 have been reported in primary human lung adenocarcinomas and derivative cell lines. Here we used a somatically activatable mutant Kras-driven model of mouse lung cancer to compare the role of Lkb1 to other tumour suppressors in lung cancer. Although Kras mutation cooperated with loss of p53 or Ink4a/Arf (also known as Cdkn2a) in this system, the strongest cooperation was seen with homozygous inactivation of Lkb1. Lkb1-deficient tumours demonstrated shorter latency, an expanded histological spectrum (adeno-, squamous and large-cell carcinoma) and more frequent metastasis compared to tumours lacking p53 or Ink4a/Arf. Pulmonary tumorigenesis was also accelerated by hemizygous inactivation of Lkb1. Consistent with these findings, inactivation of LKB1 was found in 34% and 19% of 144 analysed human lung adenocarcinomas and squamous cell carcinomas, respectively. Expression profiling in human lung cancer cell lines and mouse lung tumours identified a variety of metastasis-promoting genes, such as NEDD9, VEGFC and CD24, as targets of LKB1 repression in lung cancer. These studies establish LKB1 as a critical barrier to pulmonary tumorigenesis, controlling initiation, differentiation and metastasis.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer

Martin L. Sos; Stefanie Fischer; Roland T. Ullrich; Martin Peifer; Johannes M. Heuckmann; Mirjam Koker; Stefanie Heynck; Isabel Stückrath; Jonathan M. Weiss; Florian Fischer; Kathrin Michel; Aviva Goel; Lucia Regales; Katerina Politi; Samanthi A. Perera; Matthäus Getlik; Lukas C. Heukamp; Sascha Ansén; Thomas Zander; Rameen Beroukhim; Hamid Kashkar; Kevan M. Shokat; William R. Sellers; Daniel Rauh; Christine Orr; Klaus P. Hoeflich; Lori S. Friedman; Kwok-Kin Wong; William Pao; Roman K. Thomas

In cancer, genetically activated proto-oncogenes often induce “upstream” dependency on the activity of the mutant oncoprotein. Therapeutic inhibition of these activated oncoproteins can induce massive apoptosis of tumor cells, leading to sometimes dramatic tumor regressions in patients. The PI3K and MAPK signaling pathways are central regulators of oncogenic transformation and tumor maintenance. We hypothesized that upstream dependency engages either one of these pathways preferentially to induce “downstream” dependency. Therefore, we analyzed whether downstream pathway dependency segregates by genetic aberrations upstream in lung cancer cell lines. Here, we show by systematically linking drug response to genomic aberrations in non-small-cell lung cancer, as well as in cell lines of other tumor types and in a series of in vivo cancer models, that tumors with genetically activated receptor tyrosine kinases depend on PI3K signaling, whereas tumors with mutations in the RAS/RAF axis depend on MAPK signaling. However, efficacy of downstream pathway inhibition was limited by release of negative feedback loops on the reciprocal pathway. By contrast, combined blockade of both pathways was able to overcome the reciprocal pathway activation induced by inhibitor-mediated release of negative feedback loops and resulted in a significant increase in apoptosis and tumor shrinkage. Thus, by using a systematic chemo-genomics approach, we identify genetic lesions connected to PI3K and MAPK pathway activation and provide a rationale for combined inhibition of both pathways. Our findings may have implications for patient stratification in clinical trials.


Oncogene | 2006

K-ras activation generates an inflammatory response in lung tumors

Hongbin Ji; Houghton Am; Thomas J. Mariani; Samanthi A. Perera; Kim Cb; Robert F. Padera; Giovanni Tonon; Kate McNamara; Marconcini La; El-Bardeesy N; Roderick T. Bronson; David J. Sugarbaker; Richard S. Maser; Steven D. Shapiro; Kwok-Kin Wong

Activating mutations in K-ras are one of the most common genetic alterations in human lung cancer. To dissect the role of K-ras activation in bronchial epithelial cells during lung tumorigenesis, we created a model of lung adenocarcinoma by generating a conditional mutant mouse with both Clara cell secretory protein (CC10)-Cre recombinase and the Lox-Stop-Lox K-rasG12D alleles. The activation of K-ras mutant allele in CC10 positive cells resulted in a progressive phenotype characterized by cellular atypia, adenoma and ultimately adenocarcinoma. Surprisingly, K-ras activation in the bronchiolar epithelium is associated with a robust inflammatory response characterized by an abundant infiltration of alveolar macrophages and neutrophils. These mice displayed early mortality in the setting of this pulmonary inflammatory response with a median survival of 8 weeks. Bronchoalveolar lavage fluid from these mutant mice contained the MIP-2, KC, MCP-1 and LIX chemokines that increased significantly with age. Cell lines derived from these tumors directly produced MIP-2, LIX and KC. This model demonstrates that K-ras activation in the lung induces the elaboration of inflammatory chemokines and provides an excellent means to further study the complex interactions between inflammatory cells, chemokines and tumor progression.


Cancer Research | 2007

Mutations in BRAF and KRAS Converge on Activation of the Mitogen-Activated Protein Kinase Pathway in Lung Cancer Mouse Models

Hongbin Ji; Zhenxiong Wang; Samanthi A. Perera; Danan Li; Mei Chih Liang; Sara Zaghlul; Kate McNamara; Liang Chen; Mitchell Albert; Yanping Sun; Ruqayyah Al-Hashem; Lucian R. Chirieac; Robert F. Padera; Roderick T. Bronson; Roman K. Thomas; Levi A. Garraway; Pasi A. Jänne; Bruce E. Johnson; Lynda Chin; Kwok-Kin Wong

Mutations in the BRAF and KRAS genes occur in approximately 1% to 2% and 20% to 30% of non-small-cell lung cancer patients, respectively, suggesting that the mitogen-activated protein kinase (MAPK) pathway is preferentially activated in lung cancers. Here, we show that lung-specific expression of the BRAF V600E mutant induces the activation of extracellular signal-regulated kinase (ERK)-1/2 (MAPK) pathway and the development of lung adenocarcinoma with bronchioloalveolar carcinoma features in vivo. Deinduction of transgene expression led to dramatic tumor regression, paralleled by dramatic dephosphorylation of ERK1/2, implying a dependency of BRAF-mutant lung tumors on the MAPK pathway. Accordingly, in vivo pharmacologic inhibition of MAPK/ERK kinase (MEK; MAPKK) using a specific MEK inhibitor, CI-1040, induced tumor regression associated with inhibition of cell proliferation and induction of apoptosis in these de novo lung tumors. CI-1040 treatment also led to dramatic tumor shrinkage in murine lung tumors driven by a mutant KRas allele. Thus, somatic mutations in different signaling intermediates of the same pathway induce exquisite dependency on a shared downstream effector. These results unveil a potential common vulnerability of BRAF and KRas mutant lung tumors that potentially affects rational deployment of MEK targeted therapies to non-small-cell lung cancer patients.


Cancer Research | 2008

Hsp90 Inhibition Suppresses Mutant EGFR-T790M Signaling and Overcomes Kinase Inhibitor Resistance

Takeshi Shimamura; Danan Li; Hongbin Ji; Henry J. Haringsma; Elizabeth Liniker; Christa L. Borgman; April M. Lowell; Yuko Minami; Kate McNamara; Samanthi A. Perera; Sara Zaghlul; Roman K. Thomas; Heidi Greulich; Susumu Kobayashi; Lucian R. Chirieac; Robert F. Padera; Shigeto Kubo; Masaya Takahashi; Daniel G. Tenen; Matthew Meyerson; Kwok-Kin Wong; Geoffrey I. Shapiro

The epidermal growth factor receptor (EGFR) secondary kinase domain T790M non-small cell lung cancer (NSCLC) mutation enhances receptor catalytic activity and confers resistance to the reversible tyrosine kinase inhibitors gefitinib and erlotinib. Currently, irreversible inhibitors represent the primary approach in clinical use to circumvent resistance. We show that higher concentrations of the irreversible EGFR inhibitor CL-387,785 are required to inhibit EGFR phosphorylation in T790M-expressing cells compared with EGFR mutant NSCLC cells without T790M. Additionally, CL-387,785 does not fully suppress phosphorylation of other activated receptor tyrosine kinases (RTK) in T790M-expressing cells. These deficiencies result in residual Akt and mammalian target of rapamycin (mTOR) activities. Full suppression of EGFR-mediated signaling in T790M-expressing cells requires the combination of CL-387,785 and rapamycin. In contrast, Hsp90 inhibition overcomes these limitations in vitro and depletes cells of EGFR, other RTKs, and phospho-Akt and inhibits mTOR signaling whether or not T790M is present. EGFR-T790M-expressing cells rendered resistant to CL-387,785 by a kinase switch mechanism retain sensitivity to Hsp90 inhibition. Finally, Hsp90 inhibition causes regression in murine lung adenocarcinomas driven by mutant EGFR (L858R) with or without T790M. However, efficacy in the L858R-T790M model requires a more intense treatment schedule and responses were transient. Nonetheless, these findings suggest that Hsp90 inhibitors may be effective in T790M-expressing cells and offer an alternative therapeutic strategy for this subset of lung cancers.


Cancer Research | 2007

Proapoptotic BH3-Only BCL-2 Family Protein BIM Connects Death Signaling from Epidermal Growth Factor Receptor Inhibition to the Mitochondrion

Jing Deng; Takeshi Shimamura; Samanthi A. Perera; Nicole Carlson; Dongpo Cai; Geoffrey I. Shapiro; Kwok-Kin Wong; Anthony Letai

A subset of lung cancers expresses mutant forms of epidermal growth factor receptor (EGFR) that are constitutively activated. Cancers bearing activated EGFR can be effectively targeted with EGFR inhibitors such as erlotinib. However, the death-signaling pathways engaged after EGFR inhibition are poorly understood. Here, we show that death after inhibition of EGFR uses the mitochondrial, or intrinsic, pathway of cell death controlled by the BCL-2 family of proteins. BCL-2 inhibits cell death induced by erlotinib, but BCL-2-protected cells are thus rendered BCL-2-dependent and sensitive to the BCL-2 antagonist ABT-737. BH3 profiling reveals that mitochondrial BCL-2 is primed by death signals after EGFR inhibition in these cells. As this result implies, key death-signaling proteins of the BCL-2 family, including BIM, were found to be up-regulated after erlotinib treatment and intercepted by overexpressed BCL-2. BIM is induced by lung cancer cell lines that are sensitive to erlotinib but not by those resistant. Reduction of BIM by siRNA induces resistance to erlotinib. We show that EGFR activity is inhibited by erlotinib in H1650, a lung cancer cell line that bears a sensitizing EGFR mutation, but that H1650 is not killed. We identify the block in apoptosis in this cell line, and show that a novel form of erlotinib resistance is present, a block in BIM up-regulation downstream of EGFR inhibition. This finding has clear implications for overcoming resistance to erlotinib. Resistance to EGFR inhibition can be modulated by alterations in the intrinsic apoptotic pathway controlled by the BCL-2 family of proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2009

HER2YVMA drives rapid development of adenosquamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy

Samanthi A. Perera; Danan Li; Takeshi Shimamura; Maria Gabriela Raso; Hongbin Ji; Liang Chen; Christa L. Borgman; Sara Zaghlul; Kathleyn A. Brandstetter; Shigeto Kubo; Masaya Takahashi; Lucian R. Chirieac; Robert F. Padera; Roderick T. Bronson; Geoffrey I. Shapiro; Heidi Greulich; Matthew Meyerson; Ulrich Guertler; Pilar Garin Chesa; Flavio Solca; Ignacio I. Wistuba; Kwok-Kin Wong

Mutations in the HER2 kinase domain have been identified in human clinical lung cancer specimens. Here we demonstrate that inducible expression of the most common HER2 mutant (HER2YVMA) in mouse lung epithelium causes invasive adenosquamous carcinomas restricted to proximal and distal bronchioles. Continuous expression of HER2YVMA is essential for tumor maintenance, suggesting a key role for HER2 in lung adenosquamous tumorigenesis. Preclinical studies assessing the in vivo effect of erlotinib, trastuzumab, BIBW2992, and/or rapamycin on HER2YVMA transgenic mice or H1781 xenografts with documented tumor burden revealed that the combination of BIBW2992 and rapamycin is the most effective treatment paradigm causing significant tumor shrinkage. Immunohistochemical analysis of lung tumors treated with BIBW2992 and rapamycin combination revealed decreased phosphorylation levels for proteins in both upstream and downstream arms of MAPK and Akt/mTOR signaling axes, indicating inhibition of these pathways. Based on these findings, clinical testing of the BIBW2992/rapamycin combination in non-small cell lung cancer patients with tumors expressing HER2 mutations is warranted.


Journal of Clinical Investigation | 2009

HIF2α cooperates with RAS to promote lung tumorigenesis in mice

William Y. Kim; Samanthi A. Perera; Bing Zhou; Julian Carretero; Jen Jen Yeh; Samuel Heathcote; Autumn L. Jackson; Petros Nikolinakos; Beatriz Ospina; George N. Naumov; Kathleyn A. Brandstetter; Victor J. Weigman; Sara Zaghlul; D. Neil Hayes; Robert F. Padera; John V. Heymach; Andrew L. Kung; Norman E. Sharpless; William G. Kaelin; Kwok-Kin Wong

Members of the hypoxia-inducible factor (HIF) family of transcription factors regulate the cellular response to hypoxia. In non–small cell lung cancer (NSCLC), high HIF2α levels correlate with decreased overall survival, and inhibition of either the protein encoded by the canonical HIF target gene VEGF or VEGFR2 improves clinical outcomes. However, whether HIF2α is causal in imparting this poor prognosis is unknown. Here, we generated mice that conditionally express both a nondegradable variant of HIF2α and a mutant form of Kras (KrasG12D) that induces lung tumors. Mice expressing both Hif2a and KrasG12D in the lungs developed larger tumors and had an increased tumor burden and decreased survival compared with mice expressing only KrasG12D. Additionally, tumors expressing both KrasG12D and Hif2a were more invasive, demonstrated features of epithelial-mesenchymal transition (EMT), and exhibited increased angiogenesis associated with mobilization of circulating endothelial progenitor cells. These results implicate HIF2α causally in the pathogenesis of lung cancer in mice, demonstrate in vivo that HIF2α can promote expression of markers of EMT, and define HIF2α as a promoter of tumor growth and progression in a solid tumor other than renal cell carcinoma. They further suggest a possible causal relationship between HIF2α and prognosis in patients with NSCLC.


Clinical Cancer Research | 2012

Ganetespib (STA-9090), a Nongeldanamycin HSP90 Inhibitor, Has Potent Antitumor Activity in In Vitro and In Vivo Models of Non–Small Cell Lung Cancer

Takeshi Shimamura; Samanthi A. Perera; Kevin Foley; Jim Sang; Scott J. Rodig; Takayo Inoue; Liang Chen; Danan Li; Julian Carretero; Yu-Chen Li; Papiya Sinha; Christopher D. Carey; Christa L. Borgman; John-Paul Jimenez; Matthew Meyerson; Weiwen Ying; James Barsoum; Kwok-Kin Wong; Geoffrey I. Shapiro

Purpose: We describe the anticancer activity of ganetespib, a novel non-geldanamycin heat shock protein 90 (HSP90) inhibitor, in non-small cell lung cancer (NSCLC) models. Experimental Design: The activity of ganetespib was compared with that of the geldanamycin 17-AAG in biochemical assays, cell lines, and xenografts, and evaluated in an ERBB2 YVMA-driven mouse lung adenocarcinoma model. Results: Ganetespib blocked the ability of HSP90 to bind to biotinylated geldanamycin and disrupted the association of HSP90 with its cochaperone, p23, more potently than 17-AAG. In genomically defined NSCLC cell lines, ganetespib caused depletion of receptor tyrosine kinases, extinguishing of downstream signaling, inhibition of proliferation and induction of apoptosis with IC50 values ranging 2 to 30 nmol/L, substantially lower than those required for 17-AAG (20–3,500 nmol/L). Ganetespib was also approximately 20-fold more potent in isogenic Ba/F3 pro-B cells rendered IL-3 independent by expression of EGFR and ERBB2 mutants. In mice bearing NCI-H1975 (EGFR L858R/T790M) xenografts, ganetespib was rapidly eliminated from plasma and normal tissues but was maintained in tumor with t1/2 58.3 hours, supporting once-weekly dosing experiments, in which ganetespib produced greater tumor growth inhibition than 17-AAG. However, after a single dose, reexpression of mutant EGFR occurred by 72 hours, correlating with reversal of antiproliferative and proapoptotic effects. Consecutive day dosing resulted in xenograft regressions, accompanied by more sustained pharmacodynamic effects. Ganetespib also showed activity against mouse lung adenocarcinomas driven by oncogenic ERBB2 YVMA. Conclusions: Ganetespib has greater potency than 17-AAG and potential efficacy against several NSCLC subsets, including those harboring EGFR or ERBB2 mutation. Clin Cancer Res; 18(18); 4973–85. ©2012 AACR.

Collaboration


Dive into the Samanthi A. Perera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert F. Padera

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucian R. Chirieac

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongbin Ji

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge