Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sameer M. Zuberi is active.

Publication


Featured researches published by Sameer M. Zuberi.


The Lancet | 2001

Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel

Anne Jouvenceau; Louise H Eunson; A Spauschus; Venkataswaran Ramesh; Sameer M. Zuberi; Dimitri M. Kullmann; Michael G. Hanna

BACKGROUND The genetic basis of most common forms of human paroxysmal disorders of the central nervous system, such as epilepsy, remains unidentified. Several animal models of absence epilepsy, commonly accompanied by ataxia, are caused by mutations in the brain P/Q-type voltage-gated calcium (Ca(2+)) channel. We aimed to determine whether the P/Q-type Ca(2+) channel is associated with both epilepsy and episodic ataxia type 2 in human beings. METHODS We identified an 11-year-old boy with a complex phenotype comprising primary generalised epilepsy, episodic and progressive ataxia, and mild learning difficulties. We sequenced the entire coding region of the gene encoding the voltage-gated P/Q-type Ca(2+) channel (CACNA1A) on chromosome 19. We then introduced the newly identified heterozygous mutation into the full-length rabbit cDNA and did detailed electrophysiological expression studies of mutant and wild type Ca(2+) channels. FINDINGS We identified a previously undescribed heterozygous point mutation (C5733T) in CACNA1A. This mutation introduces a premature stop codon (R1820stop) resulting in complete loss of the C terminal region of the pore-forming subunit of this Ca(2+) channel. Expression studies provided direct evidence that this mutation impairs Ca(2+) channel function. Mutant/wild-type co-expression studies indicated a dominant negative effect. INTERPRETATION Human absence epilepsy can be associated with dysfunction of the brain P/Q-type voltage-gated Ca(2+) channel. The phenotype in this patient has striking parallels with the mouse absence epilepsy models.


American Journal of Human Genetics | 2001

CHRNB2 Is the Second Acetylcholine Receptor Subunit Associated with Autosomal Dominant Nocturnal Frontal Lobe Epilepsy

Hilary A. Phillips; Isabelle Favre; Martin Kirkpatrick; Sameer M. Zuberi; David Goudie; Sarah E. Heron; Ingrid E. Scheffer; Grant R. Sutherland; Samuel F. Berkovic; Daniel Bertrand; John C. Mulley

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an uncommon, idiopathic partial epilepsy characterized by clusters of motor seizures occurring in sleep. We describe a mutation of the beta2 subunit of the nicotinic acetylcholine receptor, effecting a V287M substitution within the M2 domain. The mutation, in an evolutionary conserved region of CHRNB2, is associated with ADNFLE in a Scottish family. Functional receptors with the V287M mutation are highly expressed in Xenopus oocytes and characterized by an approximately 10-fold increase in acetylcholine sensitivity. CHRNB2 is a new gene for idiopathic epilepsy, the second acetylcholine receptor subunit implicated in ADNFLE.


Epilepsia | 2017

ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology

Ingrid E. Scheffer; Samuel F. Berkovic; Giuseppe Capovilla; Mary B. Connolly; Jacqueline A. French; Laura Maria de Figueiredo Ferreira Guilhoto; Edouard Hirsch; Satish Jain; Gary W. Mathern; Solomon L. Moshé; Douglas R. Nordli; Emilio Perucca; Torbjoern Tomson; Samuel Wiebe; Yuehua Zhang; Sameer M. Zuberi

The International League Against Epilepsy (ILAE) Classification of the Epilepsies has been updated to reflect our gain in understanding of the epilepsies and their underlying mechanisms following the major scientific advances that have taken place since the last ratified classification in 1989. As a critical tool for the practicing clinician, epilepsy classification must be relevant and dynamic to changes in thinking, yet robust and translatable to all areas of the globe. Its primary purpose is for diagnosis of patients, but it is also critical for epilepsy research, development of antiepileptic therapies, and communication around the world. The new classification originates from a draft document submitted for public comments in 2013, which was revised to incorporate extensive feedback from the international epilepsy community over several rounds of consultation. It presents three levels, starting with seizure type, where it assumes that the patient is having epileptic seizures as defined by the new 2017 ILAE Seizure Classification. After diagnosis of the seizure type, the next step is diagnosis of epilepsy type, including focal epilepsy, generalized epilepsy, combined generalized, and focal epilepsy, and also an unknown epilepsy group. The third level is that of epilepsy syndrome, where a specific syndromic diagnosis can be made. The new classification incorporates etiology along each stage, emphasizing the need to consider etiology at each step of diagnosis, as it often carries significant treatment implications. Etiology is broken into six subgroups, selected because of their potential therapeutic consequences. New terminology is introduced such as developmental and epileptic encephalopathy. The term benign is replaced by the terms self‐limited and pharmacoresponsive, to be used where appropriate. It is hoped that this new framework will assist in improving epilepsy care and research in the 21st century.


Nature Genetics | 2014

Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling

Gillian I. Rice; Yoandris del Toro Duany; Emma M. Jenkinson; Gabriella M.A. Forte; Beverley Anderson; Giada Ariaudo; Brigitte Bader-Meunier; Roberta Battini; Michael W. Beresford; Manuela Casarano; Mondher Chouchane; Rolando Cimaz; Abigail Collins; Nuno J V Cordeiro; Russell C. Dale; Joyce Davidson; Liesbeth De Waele; Isabelle Desguerre; Laurence Faivre; Elisa Fazzi; Bertrand Isidor; Lieven Lagae; Andrew Latchman; Pierre Lebon; Chumei Li; John H. Livingston; Charles Marques Lourenço; Maria Margherita Mancardi; Alice Masurel-Paulet; Iain B. McInnes

The type I interferon system is integral to human antiviral immunity. However, inappropriate stimulation or defective negative regulation of this system can lead to inflammatory disease. We sought to determine the molecular basis of genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome and of other undefined neurological and immunological phenotypes also demonstrating an upregulated type I interferon response. We found that heterozygous mutations in the cytosolic double-stranded RNA receptor gene IFIH1 (also called MDA5) cause a spectrum of neuroimmunological features consistently associated with an enhanced interferon state. Cellular and biochemical assays indicate that these mutations confer gain of function such that mutant IFIH1 binds RNA more avidly, leading to increased baseline and ligand-induced interferon signaling. Our results demonstrate that aberrant sensing of nucleic acids can cause immune upregulation.


Lancet Neurology | 2006

De-novo mutations of the sodium channel gene SCN1A in alleged vaccine encephalopathy: a retrospective study

Samuel F. Berkovic; Louise A. Harkin; Jacinta M. McMahon; James T. Pelekanos; Sameer M. Zuberi; Elaine Wirrell; Deepak Gill; Xenia Iona; John C. Mulley; Ingrid E. Scheffer

BACKGROUND Vaccination, particularly for pertussis, has been implicated as a direct cause of an encephalopathy with refractory seizures and intellectual impairment. We postulated that cases of so-called vaccine encephalopathy could have mutations in the neuronal sodium channel alpha1 subunit gene (SCN1A) because of a clinical resemblance to severe myoclonic epilepsy of infancy (SMEI) for which such mutations have been identified. METHODS We retrospectively studied 14 patients with alleged vaccine encephalopathy in whom the first seizure occurred within 72 h of vaccination. We reviewed the relation to vaccination from source records and assessed the specific epilepsy phenotype. Mutations in SCN1A were identified by PCR amplification and denaturing high performance liquid chromatography analysis, with subsequent sequencing. Parental DNA was examined to ascertain the origin of the mutation. FINDINGS SCN1A mutations were identified in 11 of 14 patients with alleged vaccine encephalopathy; a diagnosis of a specific epilepsy syndrome was made in all 14 cases. Five mutations predicted truncation of the protein and six were missense in conserved regions of the molecule. In all nine cases where parental DNA was available the mutations arose de novo. Clinical-molecular correlation showed mutations in eight of eight cases with phenotypes of SMEI, in three of four cases with borderline SMEI, but not in two cases with Lennox-Gastaut syndrome. INTERPRETATION Cases of alleged vaccine encephalopathy could in fact be a genetically determined epileptic encephalopathy that arose de novo. These findings have important clinical implications for diagnosis and management of encephalopathy and, if confirmed in other cohorts, major societal implications for the general acceptance of vaccination.


Epilepsia | 2017

Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology

Robert S. Fisher; J. Helen Cross; Jacqueline A. French; Norimichi Higurashi; Edouard Hirsch; Floor E. Jansen; Lieven Lagae; Solomon L. Moshé; Jukka Peltola; Eliane Roulet Perez; Ingrid E. Scheffer; Sameer M. Zuberi

The International League Against Epilepsy (ILAE) presents a revised operational classification of seizure types. The purpose of such a revision is to recognize that some seizure types can have either a focal or generalized onset, to allow classification when the onset is unobserved, to include some missing seizure types, and to adopt more transparent names. Because current knowledge is insufficient to form a scientifically based classification, the 2017 Classification is operational (practical) and based on the 1981 Classification, extended in 2010. Changes include the following: (1) “partial” becomes “focal”; (2) awareness is used as a classifier of focal seizures; (3) the terms dyscognitive, simple partial, complex partial, psychic, and secondarily generalized are eliminated; (4) new focal seizure types include automatisms, behavior arrest, hyperkinetic, autonomic, cognitive, and emotional; (5) atonic, clonic, epileptic spasms, myoclonic, and tonic seizures can be of either focal or generalized onset; (6) focal to bilateral tonic–clonic seizure replaces secondarily generalized seizure; (7) new generalized seizure types are absence with eyelid myoclonia, myoclonic absence, myoclonic–atonic, myoclonic–tonic–clonic; and (8) seizures of unknown onset may have features that can still be classified. The new classification does not represent a fundamental change, but allows greater flexibility and transparency in naming seizure types.


Annals of Neurology | 2000

Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability.

Louise H Eunson; Ruth Rea; Sameer M. Zuberi; S. Youroukos; C. P. Panayiotopoulos; R. Liguori; P. Avoni; Robert McWilliam; John Stephenson; Michael G. Hanna; Dimitri M. Kullmann; A Spauschus

Episodic ataxia type 1 (EA1) is an autosomal dominant central nervous system potassium channelopathy characterized by brief attacks of cerebellar ataxia and continuous interictal myokymia. Point mutations in the voltage‐gated potassium channel gene KCNA1 on chromosome 12p associate with EA1. We have studied 4 families and identified three new and one previously reported heterozygous point mutations in this gene. Affected members in Family A (KCNA1 G724C) exhibit partial epilepsy and myokymia but no ataxic episodes, supporting the suggestion that there is an association between mutations of KCNA1 and epilepsy. Affected members in Family B (KCNA1 C731A) exhibit myokymia alone, suggesting a new phenotype of isolated myokymia. Family C harbors the first truncation to be reported in KCNA1 (C1249T) and exhibits remarkably drug‐resistant EA1. Affected members in Family D (KCNA1 G1210A) exhibit attacks typical of EA1. This mutation has recently been reported in an apparently unrelated family, although no functional studies were attempted. Heterologous expression of the proteins encoded by the mutant KCNA1 genes suggest that the four point mutations impair delayed‐rectifier type potassium currents by different mechanisms. Increased neuronal excitability is likely to be the common pathophysiological basis for the disease in these families. The degree and nature of the potassium channel dysfunction may be relevant to the new phenotypic observations reported in this study. Ann Neurol 2000;48:647–656


American Journal of Human Genetics | 2012

PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome.

Sarah E. Heron; Bronwyn E. Grinton; Sara Kivity; Zaid Afawi; Sameer M. Zuberi; James N. Hughes; Clair Pridmore; Bree L. Hodgson; Xenia Iona; Lynette G. Sadleir; James T. Pelekanos; Eric Herlenius; Hadassa Goldberg-Stern; Haim Bassan; Eric Haan; Amos D. Korczyn; Alison Gardner; Mark Corbett; Jozef Gecz; Paul Q. Thomas; John C. Mulley; Samuel F. Berkovic; Ingrid E. Scheffer; Leanne M. Dibbens

Benign familial infantile epilepsy (BFIE) is a self-limited seizure disorder that occurs in infancy and has autosomal-dominant inheritance. We have identified heterozygous mutations in PRRT2, which encodes proline-rich transmembrane protein 2, in 14 of 17 families (82%) affected by BFIE, indicating that PRRT2 mutations are the most frequent cause of this disorder. We also report PRRT2 mutations in five of six (83%) families affected by infantile convulsions and choreoathetosis (ICCA) syndrome, a familial syndrome in which infantile seizures and an adolescent-onset movement disorder, paroxysmal kinesigenic choreoathetosis (PKC), co-occur. These findings show that mutations in PRRT2 cause both epilepsy and a movement disorder. Furthermore, PRRT2 mutations elicit pleiotropy in terms of both age of expression (infancy versus later childhood) and anatomical substrate (cortex versus basal ganglia).


Nature Genetics | 2006

Mutations in the gene encoding GlyT2 ( SLC6A5 ) define a presynaptic component of human startle disease

Mark I. Rees; Kirsten Harvey; Brian R. Pearce; Seo-Kyung Chung; Ian Duguid; Philip Thomas; Sarah E. Beatty; Gail E. Graham; Linlea Armstrong; Rita Shiang; Kim J. Abbott; Sameer M. Zuberi; John B.P. Stephenson; Michael John Owen; Marina A. J. Tijssen; Arn M. J. M. van den Maagdenberg; Trevor G. Smart; Stéphane Supplisson; Robert J. Harvey

Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB), gephyrin (GPHN) and RhoGEF collybistin (ARHGEF9). However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites.


Brain | 2010

Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency)

Philippa B. Mills; Emma Footitt; Kevin Mills; Karin Tuschl; Sarah E. Aylett; Sophia Varadkar; Cheryl Hemingway; Neil Marlow; Janet M. Rennie; Peter Baxter; Olivier Dulac; Rima Nabbout; William J. Craigen; Bernhard Schmitt; François Feillet; Ernst Christensen; Pascale de Lonlay; Mike Pike; M Imelda Hughes; Eduard A. Struys; Cornelis Jakobs; Sameer M. Zuberi; Peter Clayton

Pyridoxine-dependent epilepsy was recently shown to be due to mutations in the ALDH7A1 gene, which encodes antiquitin, an enzyme that catalyses the nicotinamide adenine dinucleotide-dependent dehydrogenation of l-α-aminoadipic semialdehyde/l-Δ1-piperideine 6-carboxylate. However, whilst this is a highly treatable disorder, there is general uncertainty about when to consider this diagnosis and how to test for it. This study aimed to evaluate the use of measurement of urine l-α-aminoadipic semialdehyde/creatinine ratio and mutation analysis of ALDH7A1 (antiquitin) in investigation of patients with suspected or clinically proven pyridoxine-dependent epilepsy and to characterize further the phenotypic spectrum of antiquitin deficiency. Urinary l-α-aminoadipic semialdehyde concentration was determined by liquid chromatography tandem mass spectrometry. When this was above the normal range, DNA sequencing of the ALDH7A1 gene was performed. Clinicians were asked to complete questionnaires on clinical, biochemical, magnetic resonance imaging and electroencephalography features of patients. The clinical spectrum of antiquitin deficiency extended from ventriculomegaly detected on foetal ultrasound, through abnormal foetal movements and a multisystem neonatal disorder, to the onset of seizures and autistic features after the first year of life. Our relatively large series suggested that clinical diagnosis of pyridoxine dependent epilepsy can be challenging because: (i) there may be some response to antiepileptic drugs; (ii) in infants with multisystem pathology, the response to pyridoxine may not be instant and obvious; and (iii) structural brain abnormalities may co-exist and be considered sufficient cause of epilepsy, whereas the fits may be a consequence of antiquitin deficiency and are then responsive to pyridoxine. These findings support the use of biochemical and DNA tests for antiquitin deficiency and a clinical trial of pyridoxine in infants and children with epilepsy across a broad range of clinical scenarios.

Collaboration


Dive into the Sameer M. Zuberi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liam Dorris

Royal Hospital for Sick Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John B.P. Stephenson

Royal Hospital for Sick Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Helen Cross

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eleanor Reavey

Royal Hospital for Sick Children

View shared research outputs
Researchain Logo
Decentralizing Knowledge