Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sami Franssila is active.

Publication


Featured researches published by Sami Franssila.


Advanced Materials | 2011

Mechanically Durable Superhydrophobic Surfaces

Tuukka Verho; Chris Bower; Piers Andrew; Sami Franssila; Olli Ikkala; Robin H. A. Ras

Development of durable non-wetting surfaces is hindered by the fragility of the microscopic roughness features that are necessary for superhydrophobicity. Mechanical wear on superhydrophobic surfaces usually shows as increased sticking of water, leading to loss of non-wettability. Increased wear resistance has been demonstrated by exploiting hierarchical roughness where nanoscale roughness is protected to some degree by large scale features, and avoiding the use of hydrophilic bulk materials is shown to help prevent the formation of hydrophilic defects as a result of wear. Additionally, self-healing hydrophobic layers and roughness patterns have been suggested and demonstrated. Nevertheless, mechanical contact not only causes damage to roughness patterns but also surface contamination, which shortens the lifetime of superhydrophobic surfaces in spite of the self-cleaning effect. The use of photocatalytic effect and reduced electric resistance have been suggested to prevent the accumulation of surface contaminants. Resistance to organic contaminants is more challenging, however, oleophobic surface patterns which are non-wetting to organic liquids have been demonstrated. While the fragility of superhydrophobic surfaces currently limits their applicability, development of mechanically durable surfaces will enable a wide range of new applications in the future.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Reversible switching between superhydrophobic states on a hierarchically structured surface

Tuukka Verho; Juuso T. Korhonen; Lauri Sainiemi; Ville Jokinen; Chris Bower; Kristian Franze; Sami Franssila; Pierce Andrew; Olli Ikkala; Robin H. A. Ras

Nature offers exciting examples for functional wetting properties based on superhydrophobicity, such as the self-cleaning surfaces on plant leaves and trapped air on immersed insect surfaces allowing underwater breathing. They inspire biomimetic approaches in science and technology. Superhydrophobicity relies on the Cassie wetting state where air is trapped within the surface topography. Pressure can trigger an irreversible transition from the Cassie state to the Wenzel state with no trapped air—this transition is usually detrimental for nonwetting functionality and is to be avoided. Here we present a new type of reversible, localized and instantaneous transition between two Cassie wetting states, enabled by two-level (dual-scale) topography of a superhydrophobic surface, that allows writing, erasing, rewriting and storing of optically displayed information in plastrons related to different length scales.


Advanced Materials | 2011

Superhydrophobic Tracks for Low-Friction, Guided Transport of Water Droplets

Henrikki Mertaniemi; Ville Jokinen; Lauri Sainiemi; Sami Franssila; Abraham Marmur; Olli Ikkala; Robin H. A. Ras

anti-fogging, [ 6 ] anti-icing, [ 7 ] buoyancy [ 8 ] and drag reduction. [ 9 ] By defi nition, a surface is superhydrophobic if the contact angle between a water drop and the surface at the solid/liquid/air interface is larger than 150 ° , and the contact angle hysteresis is small, i.e., drops readily slide or roll off when the surface is tilted slightly. [ 10–12 ] Here we explore the feasibility of using superhydrophobicity for guided transport of water droplets. We demonstrate a simple yet effi cient approach for droplet transport, in which the droplet is moving on a superhydrophobic surface, using gravity or electrostatic forces as the driving force for droplet transportation and using tracks with vertical walls as gravitational potential barriers to design trajectories. Although the slope of the platform is as small as a few degrees, the drops move at a considerable speed up to 14 cm s − 1 , even in highly curved trajectories. We further demonstrate splitting of a droplet using a superhydrophobic knife and drop-size selection using superhydrophobic tracks. These concepts may fi nd applications in droplet microfl uidics and lab-on-a-chip systems where single droplets with potential analytes are manipulated. [ 13–16 ]


Advanced Materials | 2011

Non-Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication

Lauri Sainiemi; Ville Jokinen; Ali Shah; Maksim Shpak; Susanna Aura; Pia Suvanto; Sami Franssila

Constantly increasing demand of renewable and nonpolluting energy production methods has made solar cells one of today’s hottest research areas. Developing more cost-effective fabrication methods that enable production of extremely non-refl ecting surfaces is one of the key issues in solar cell research. [ 1 , 2 ] Many other applications, such as miniaturized chemical analysis systems, would also benefi t greatly from low-cost surfaces with low and uniform refl ectivity. [ 3 ] Typically, suppression of Fresnel refl ection has been achieved by antirefl ective coatings, but they suppress refl ection effi ciently only in a narrow wavelength range. Suppression of refl ection over a broad spectral range can be achieved by using nanotextured surfaces that form a graded transition of the refractive index from air to the substrate. [ 1 , 2 , 4–12 ]


Biomicrofluidics | 2012

A practical guide for the fabrication of microfluidic devices using glass and silicon

Ciprian Iliescu; Hayden Taylor; Marioara Avram; Jianmin Miao; Sami Franssila

This paper describes the main protocols that are used for fabricating microfluidic devices from glass and silicon. Methods for micropatterning glass and silicon are surveyed, and their limitations are discussed. Bonding methods that can be used for joining these materials are summarized and key process parameters are indicated. The paper also outlines techniques for forming electrical connections between microfluidic devices and external circuits. A framework is proposed for the synthesis of a complete glass/silicon device fabrication flow.


Mass Spectrometry Reviews | 2009

Microchip technology in mass spectrometry

Tiina Sikanen; Sami Franssila; Tiina J. Kauppila; Risto Kostiainen; Tapio Kotiaho; Raimo A. Ketola

Microfabrication of analytical devices is currently of growing interest and many microfabricated instruments have also entered the field of mass spectrometry (MS). Various (atmospheric pressure) ion sources as well as mass analyzers have been developed exploiting microfabrication techniques. The most common approach thus far has been the miniaturization of the electrospray ion source and its integration with various separation and sampling units. Other ionization techniques, mainly atmospheric pressure chemical ionization and photoionization, have also been subject to miniaturization, though they have not attracted as much attention. Likewise, all common types of mass analyzers have been realized by microfabrication and, in most cases, successfully applied to MS analysis in conjunction with on-chip ionization. This review summarizes the latest achievements in the field of microfabricated ion sources and mass analyzers. Representative applications are reviewed focusing on the development of fully microfabricated systems where ion sources or analyzers are integrated with microfluidic separation devices or microfabricated pums and detectors, respectively. Also the main microfabrication methods, with their possibilities and constraints, are briefly discussed together with the most commonly used materials.


Nanotechnology | 2009

The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching

Nikolai Chekurov; Kestutis Grigoras; Antti Peltonen; Sami Franssila; Ilkka Tittonen

We show that gallium-ion-implanted silicon serves as an etch mask for fabrication of high aspect ratio nanostructures by cryogenic plasma etching (deep reactive ion etching). The speed of focused ion beam (FIB) patterning is greatly enhanced by the fact that only a thin approx. 30 nm surface layer needs to be modified to create a mask for the etching step. Etch selectivity between gallium-doped and undoped material is at least 1000:1, greatly decreasing the mask erosion problems. The resolution of the combined FIB-DRIE process is 20 lines microm(-1) with the smallest masked feature size of 40 nm. The maximum achieved aspect ratio is 15:1 (e.g. 600 nm high pillars 40 nm in diameter).


Lab on a Chip | 2003

Poly(dimethylsiloxane) electrospray devices fabricated with diamond-like carbon–poly(dimethylsiloxane) coated SU-8 masters

Katri Huikko; Pekka Östman; Kestutis Grigoras; Santeri Tuomikoski; V.-M. Tiainen; Antti Soininen; K. Puolanne; Andreas Manz; Sami Franssila; Risto Kostiainen; T. Kotiaho

This study presents coupling of a poly(dimethylsiloxane) (PDMS) micro-chip with electrospray ionization-mass spectrometry (ESI-MS). Stable electrospray is generated directly from a PDMS micro-channel without pressure assistance. Hydrophobic PDMS aids the formation of a small Taylor cone in the ESI process and facilitates straightforward and low-cost batch production of the ESI-MS chips. PDMS chips were replicated with masters fabricated from SU-8 negative photoresist. A novel coating, an amorphous diamond-like carbon-poly(dimethylsiloxane) hybrid, deposited on the masters by the filtered pulsed plasma arc discharge technique, improved significantly the lifetime of the masters in PDMS replications. PDMS chip fabrication conditions were observed to affect the amount of background peaks in the MS spectra. With an optimized fabrication process (PDMS curing agent/silicone elastomer base ratio of 1/8 (w/w), curing at 70 degree C for 48 h) low background spectra were recorded for the analytes. The performance of PDMS devices was examined in the ESI-MS analysis of some pharmaceutical compounds and amino acids.


Biomicrofluidics | 2012

Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers

Ville Jokinen; Pia Suvanto; Sami Franssila

PLASMA HYDROPHILIZATION AND SUBSEQUENT HYDROPHOBIC RECOVERY ARE STUDIED FOR TEN DIFFERENT POLYMERS OF MICROFABRICATION INTEREST: polydimethylsiloxane (PDMS), polymethylmethacrylate, polycarbonate, polyethylene, polypropylene, polystyrene, epoxy polymer SU-8, hybrid polymer ORMOCOMP, polycaprolactone, and polycaprolactone/D,L-lactide (P(CL/DLLA)). All polymers are treated identically with oxygen and nitrogen plasmas, in order to make comparisons between polymers as easy as possible. The primary measured parameter is the contact angle, which was measured on all polymers for more than 100 days in order to determine the kinetics of the hydrophobic recovery for both dry stored and rewashed samples. Clear differences and trends are observed both between different polymers and between different plasma parameters.


Lab on a Chip | 2005

Characterization of SU-8 for electrokinetic microfluidic applications.

Tiina Sikanen; Santeri Tuomikoski; Raimo A. Ketola; Risto Kostiainen; Sami Franssila; Tapio Kotiaho

The characterization of SU-8 microchannels for electrokinetic microfluidic applications is reported. The electroosmotic (EO) mobility in SU-8 microchannels was determined with respect to pH and ionic strength by the current monitoring method. Extensive electroosmotic flow (EOF), equal to that for glass microchannels, was observed at pH > or =4. The highest EO mobility was detected at pH > or =7 and was of the order of 5.8 x 10(-4) cm(2) V(-1) s(-1) in 10 mM phosphate buffer. At pH < or =3 the electroosmotic flow was shown to reverse towards the anode and to reach a magnitude of 1.8 x 10(-4) cm(2) V(-1) s(-1) in 10 mM phosphate buffer (pH 2). Also the zeta-potential on the SU-8 surface was determined, employing lithographically defined SU-8 microparticles for which a similar pH dependence was observed. SU-8 microchannels were shown to perform repeateably from day to day and no aging effects were observed in long-term use.

Collaboration


Dive into the Sami Franssila's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kestutis Grigoras

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Santeri Tuomikoski

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ville Saarela

Helsinki University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge