Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sami J. Taipale is active.

Publication


Featured researches published by Sami J. Taipale.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production

Michael T. Brett; Martin J. Kainz; Sami J. Taipale; Hari Seshan

Terrestrial organic matter inputs have long been thought to play an important role in aquatic food web dynamics. Results from recent whole lake 13C addition experiments suggest terrestrial particulate organic carbon (t-POC) inputs account for a disproportionate portion of zooplankton production. For example, several studies concluded that although t-POC only represented ≈20% of the flux of particulate carbon available to herbivorous zooplankton, this food source accounted for ≈50% of the C incorporated by zooplankton. We tested the direct dietary impact of t-POC (from the leaves of riparian vegetation) and various phytoplankton on Daphnia magna somatic growth, reproduction, growth efficiency, and lipid composition. By itself, t-POC was a very poor quality resource compared to cryptophytes, diatoms, and chlorophytes, but t-POC had similar food quality compared to cyanobacteria. Small additions of high quality Cryptomonas ozolinii to t-POC-dominated diets greatly increased Daphnia growth and reproduction. When offered alone, t-POC resulted in a Daphnia growth efficiency of 5 ± 1%, whereas 100% Cryptomonas and Scenedesmus obliquus diets resulted in growth efficiencies of 46 ± 8% (± SD) and 36 ± 3%, respectively. When offered in a 50:50 mixed diet with Cryptomonas or Scenedesmus, the t-POC fraction resulted in a partial growth efficiency of 22 ± 9% and 15 ± 6%, respectively. Daphnia that obtained 80% of their available food from t-POC assimilated 84% of their fatty acids from the phytoplankton component of their diet. Overall, our results suggest Daphnia selectively allocate phytoplankton-derived POC and lipids to enhance somatic growth and reproduction, while t-POC makes a minor contribution to zooplankton production.


Ecology | 2008

Whole-lake dissolved inorganic 13C additions reveal seasonal shifts in zooplankton diet.

Sami J. Taipale; Paula Kankaala; Marja Tiirola; Roger Jones

Sustained whole-lake additions of 13C-enriched dissolved inorganic carbon (DIC), intended to increase experimentally the delta13C of DIC in the epilimnion of a small lake with high dissolved organic carbon (DOC), were made during three seasonal periods (spring, summer, and autumn). Coupled with carbon and nitrogen stable isotope analysis of zooplankton and several of their putative food sources, these additions were used to investigate seasonal changes in the relative contributions of different food sources to zooplankton diet in the lake. Four main potential food sources were considered: phytoplankton, heterotrophic bacteria (HB), methanotrophic bacteria (MOB), and green sulfur bacteria (GSB). Because the number of potential food sources exceeded the number of isotopes analyzed, a computer program (IsoSource) was used to estimate the range of possible contributions of the various food sources. During all three periods the added inorganic 13C quickly increased the epilimnetic DIC delta13C by between 18 per thousand and 21 per thousand above the initial value of approximately -21 per thousand. This 13C enrichment of DIC was rapidly transmitted to the particulate organic matter (POM), which included photosynthetic phytoplankton. In spring and summer, delta13C of both adult and juvenile Daphnia increased by approximately 10 per thousand, indicating that Daphnia utilized autochthonous carbon. However, this 13C labeling of Daphnia was not so obvious during the autumn period, when their delta13C generally decreased. According to the IsoSource model outputs based on both delta13C and delta15N values, Daphnia utilized all four potential food source types during spring, summer, and autumn, but in different proportions. The possible contribution of phytoplankton to Daphnia diet was substantial (25-71%) in all seasons. The possible contributions of the bacterial food sources were more variable. The possible contribution of GSB was minor (0-20%) at all times and negligible in autumn. The possible contribution of HB was higher but very variable. Methanotrophic bacteria always made a significant contribution to Daphnia diet and were likely the single most important food source in autumn. Since both HB and MOB in this high-DOC lake probably depend largely on allochthonous organic carbon, our results highlight the seasonal variability in the potential importance of ecosystem subsidies in lake food webs.


Ecology | 2014

Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids

Sami J. Taipale; Michael T. Brett; Martin W. Hahn; Dominik Martin-Creuzburg; Sean Yeung; Minna Hiltunen; Ursula Strandberg; Paula Kankaala

There is considerable interest in the pathways by which carbon and growth-limiting elemental and biochemical nutrients are supplied to upper trophic levels. Fatty acids and sterols are among the most important molecules transferred across the plant-animal interface of food webs. In lake ecosystems, in addition to phytoplankton, bacteria and terrestrial organic matter are potential trophic resources for zooplankton, especially in those receiving high terrestrial organic matter inputs. We therefore tested carbon, nitrogen, and fatty acid assimilation by the crustacean Daphnia magna when consuming these resources. We fed Daphnia with monospecific diets of high-quality (Cryptomonas marssonii) and intermediate-quality (Chlamydomonas sp. and Scenedesmus gracilis) phytoplankton species, two heterotrophic bacterial strains, and particles from the globally dispersed riparian grass, Phragmites australis, representing terrestrial particulate organic carbon (t-POC). We also fed Daphnia with various mixed diets, and compared Daphnia fatty acid, carbon, and nitrogen assimilation across treatments. Our results suggest that bacteria were nutritionally inadequate diets because they lacked sterols and polyunsaturated omega-3 and omega-6 (omega-3 and omega-6) fatty acids (PUFAs). However, Daphnia were able to effectively use carbon and nitrogen from Actinobacteria, if their basal needs for essential fatty acids and sterols were met by phytoplankton. In contrast to bacteria, t-POC contained sterols and omega-6 and omega-3 fatty acids, but only at 22%, 1.4%, and 0.2% of phytoplankton levels, respectively, which indicated that t-POC food quality was especially restricted with regard to omega-3 PUFAs. Our results also showed higher assimilation of carbon than fatty acids from t-POC and bacteria into Daphnia, based on stable-isotope and fatty acids analysis, respectively. A relatively high (>20%) assimilation of carbon and fatty acids from t-POC was observed only when the proportion of t-POC was >60%, but due to low PUFA to carbon ratio, these conditions yielded poor Daphnia growth. Because of lower assimilation for carbon, nitrogen, and fatty acids from t-POC relative to diets of bacteria mixed with phytoplankton, we conclude that the microbial food web, supported by phytoplankton, and not direct t-POC consumption, may support zooplankton production. Our results suggest that terrestrial particulate organic carbon poorly supports upper trophic levels of the lakes.


Ecosphere | 2015

Inferring phytoplankton community composition with a fatty acid mixing model

Ursula Strandberg; Sami J. Taipale; Minna Hiltunen; A. W. E. Galloway; Michael T. Brett; Paula Kankaala

The taxon specificity of fatty acid composition in algal classes suggests that fatty acids could be used as chemotaxonomic markers for phytoplankton composition. The applicability of phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton composition was evaluated by using a Bayesian fatty acid-based mixing model. Fatty acid profiles from monocultures of chlorophytes, cyanobacteria, diatoms, euglenoids, dinoflagellates, raphidophyte, cryptophytes and chrysophytes were used as a reference library to infer phytoplankton community composition in five moderately humic, large boreal lakes in three different seasons (spring, summer and fall). The phytoplankton community composition was also estimated from microscopic counts. Both methods identified diatoms and cryptophytes as the major phytoplankton groups in the study lakes throughout the sampling period, together accounting for 54-63% of the phytoplankton. In addition, both methods revealed that the proportion of chlorophytes and cyanobacteria was lowest in the spring and increased towards the summer and fall, while dinoflagellates peaked in the spring. The proportion of euglenoids and raphidophytes was less than 8% of the phytoplankton biomass throughout the sampling period. The model estimated significantly lower proportions of chrysophytes in the seston than indicated by microscopic analyses. This is probably because the reference library for chrysophytes included too few taxa. Our results show that a fatty acid-based mixing model approach is a promising tool for estimating the phytoplankton community composition, while also providing information on the nutritional quality of the seston for consumers. Both the quantity and the quality of seston as a food source for zooplankton were high in the spring; total phytoplankton biomass was ;56 l gCL � 1 , and the physiologically important polyunsaturated fatty acids 20:5n-3 and 22:6n-3 comprised ;22% of fatty acids.


Science of The Total Environment | 2015

Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes.

Ursula Strandberg; Minna Hiltunen; Elli Jelkänen; Sami J. Taipale; Martin J. Kainz; Michael T. Brett; Paula Kankaala

Lake size influences various hydrological parameters, such as water retention time, circulation patterns and thermal stratification that can consequently affect the plankton community composition, benthic-pelagic coupling and the function of aquatic food webs. Although the socio-economical (particularly commercial fisheries) and ecological importance of large lakes has been widely acknowledged, little is known about the availability and trophic transfer of polyunsaturated fatty (PUFA) in large lakes. The objective of this study was to investigate trophic trajectories of PUFA in the pelagic food web (seston, zooplankton, and planktivorous fish) of six large boreal lakes in the Finnish Lake District. Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and α-linolenic acid (ALA) were the most abundant PUFA in pelagic organisms, particularly in the zooplanktivorous fish. Our results show that PUFA from the n-3 family (PUFAn-3), often associated with marine food webs, are also abundant in large lakes. The proportion of DHA increased from ~4±3% in seston to ~32±6% in vendace (Coregonus albula) and smelt (Osmerus eperlanus), whereas ALA showed the opposite trophic transfer pattern with the highest values observed in seston (~11±2%) and the lowest in the opossum shrimp (Mysis relicta) and fish (~2±1%). The dominance of diatoms and cryptophytes at the base of the food web in the study lakes accounted for the high amount of PUFAn-3 in the planktonic consumers. Furthermore, the abundance of copepods in the large lakes explains the effective transfer of DHA to planktivorous fish. The plankton community composition in these lakes supports a fishery resource (vendace) that is very high nutritional quality (in terms of EPA and DHA contents) to humans.


Environment International | 2016

Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption.

Sami J. Taipale; Kristiina Vuorio; Ursula Strandberg; Kimmo K. Kahilainen; Marko Järvinen; Minna Hiltunen; Elina Peltomaa; Paula Kankaala

Fish are an important source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for birds, mammals and humans. In aquatic food webs, these highly unsaturated fatty acids (HUFA) are essential for many physiological processes and mainly synthetized by distinct phytoplankton taxa. Consumers at different trophic levels obtain essential fatty acids from their diet because they cannot produce these sufficiently de novo. Here, we evaluated how the increase in phosphorus concentration (eutrophication) or terrestrial organic matter inputs (brownification) change EPA and DHA content in the phytoplankton. Then, we evaluated whether these changes can be seen in the EPA and DHA content of piscivorous European perch (Perca fluviatilis), which is a widely distributed species and commonly consumed by humans. Data from 713 lakes showed statistically significant differences in the abundance of EPA- and DHA-synthesizing phytoplankton as well as in the concentrations and content of these essential fatty acids among oligo-mesotrophic, eutrophic and dystrophic lakes. The EPA and DHA content of phytoplankton biomass (mgHUFAg-1) was significantly lower in the eutrophic lakes than in the oligo-mesotrophic or dystrophic lakes. We found a strong significant correlation between the DHA content in the muscle of piscivorous perch and phytoplankton DHA content (r=0.85) as well with the contribution of DHA-synthesizing phytoplankton taxa (r=0.83). Among all DHA-synthesizing phytoplankton this correlation was the strongest with the dinoflagellates (r=0.74) and chrysophytes (r=0.70). Accordingly, the EPA+DHA content of perch muscle decreased with increasing total phosphorus (r2=0.80) and dissolved organic carbon concentration (r2=0.83) in the lakes. Our results suggest that although eutrophication generally increase biomass production across different trophic levels, the high proportion of low-quality primary producers reduce EPA and DHA content in the food web up to predatory fish. Ultimately, it seems that lake eutrophication and brownification decrease the nutritional quality of fish for human consumers.


PLOS ONE | 2015

A fatty acid based bayesian approach for inferring diet in aquatic consumers

Aaron W. E. Galloway; Michael T. Brett; Gordon W. Holtgrieve; Eric J. Ward; Ashley P. Ballantyne; Carolyn W. Burns; Martin J. Kainz; Doerthe C. Müller-Navarra; Jonas Persson; Joseph L. Ravet; Ursula Strandberg; Sami J. Taipale; Gunnel Alhgren

We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a ‘consumer-resource library’ of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for δ13C and δ15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n < 20), different primary producers (e.g., diatoms, green algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles of many aquatic primary consumers are strongly influenced by their diets.


Rapid Communications in Mass Spectrometry | 2009

The influence of preservation method and time on the δ13C value of dissolved inorganic carbon in water samples

Sami J. Taipale; Eloni Sonninen

The precise delta(13)C value of dissolved inorganic carbon (DIC) is important for various types of ecological studies. Without a preservation agent, microbial degradation of organic compounds continues in water samples and the delta(13)C value of DIC will become more depleted with time. HgCl(2) or acidification is often used to prevent microbial activity in water samples collected for carbon isotope ratio analyses of DIC. Mercury compounds are toxic and result in waste disposal problems. Other inhibiting agents or preservation methods are therefore needed. Two possible solutions are to use copper sulphate (CuSO(4)) as a preservative agent or to acidify water samples with phosphoric acid (H(3)PO(4)) within 12 mL measurement Exetainers (septum-capped vials). We prepared a set of lake water samples in three types of vials: glass vials with silicone/PTFE septa, high-density polyethylene vials (HD-PE, scintillation vials) and Exetainers (12 mL) with butyl rubber septa. Samples in glass and PE vials were preserved with and without CuSO(4), whereas lake water was injected into the Exetainer and acidified with H(3)PO(4). Isotope ratios were measured in two laboratories over 6 months. The delta(13)C values of DIC systematically increased with storage time for samples preserved in glass and PE vials with and without CuSO(4). A strong correlation between a decrease of CO(2) concentration and an increase in DIC delta(13)C values was found. The delta(13)C values and DIC concentrations were stable for 6 months in acidified samples stored in Exetainers with butyl rubber septa. Therefore, we conclude that the best method for up to 6 months of storage is to inject samples in the field into butyl rubber septum capped Exetainers containing H(3)PO(4), thereby avoiding the use of preservatives.


International Journal of Systematic and Evolutionary Microbiology | 2014

Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome

Martin W. Hahn; Johanna Schmidt; Sami J. Taipale; W. Ford Doolittle; Ulrike Koll

A pure culture of an actinobacterium previously described as ‘Candidatus Rhodoluna lacicola’ strain MWH-Ta8 was established and deposited in two public culture collections. Strain MWH-Ta8T represents a free-living planktonic freshwater bacterium obtained from hypertrophic Meiliang Bay, Lake Taihu, PR China. The strain was characterized by phylogenetic and taxonomic investigations, as well as by determination of its complete genome sequence. Strain MWH-Ta8T is noticeable due to its unusually low values of cell size (0.05 µm3), genome size (1.43 Mbp), and DNA G+C content (51.5 mol%). Phylogenetic analyses based on 16S rRNA gene and RpoB sequences suggested that strain MWH-Ta8T is affiliated with the family Microbacteriaceae with Pontimonas salivibrio being its closest relative among the currently described species within this family. Strain MWH-Ta8T and the type strain of Pontimonas salivibrio shared a 16S rRNA gene sequence similarity of 94.3 %. The cell-wall peptidoglycan of strain MWH-Ta8T was of type B2β (B10), containing 2,4-diaminobutyric acid as the diamino acid. The predominant cellular fatty acids were anteiso-C15 : 0 (36.5 %), iso-C16 : 0 (16.5 %), iso-C15 : 0 (15.6 %) and iso-C14 : 0 (8.9 %), and the major (>10 %) menaquinones were MK-11 and MK-12. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unknown glycolipids. The combined phylogenetic, phenotypic and chemotaxonomic data clearly suggest that strain MWH-Ta8T represents a novel species of a new genus in the family Microbacteriaceae, for which the name Rhodoluna lacicola gen. nov., sp. nov. is proposed. The type strain of the type species is MWH-Ta8T ( = DSM 23834T = LMG 26932T).


International Journal of Systematic and Evolutionary Microbiology | 2016

Reclassification of four Polynucleobacter necessarius strains as representatives of Polynucleobacter asymbioticus comb. nov., Polynucleobacter duraquae sp. nov., Polynucleobacter yangtzensis sp. nov. and Polynucleobacter sinensis sp. nov., and emended description of Polynucleobacter necessarius.

Martin W. Hahn; Johanna Schmidt; Alexandra Pitt; Sami J. Taipale; Elke Lang

Genome comparisons based on average nucleotide identity (ANI) values of four strains currently classified as Polynucleobacter necessarius subsp. asymbioticus resulted in ANI values of 75.7–78.4 %, suggesting that each of those strains represents a separate species. The species P. necessarius was proposed by Heckmann and Schmidt in 1987 to accommodate obligate endosymbionts of ciliates affiliated with the genus Euplotes. The required revision of this species is, however, hampered by the fact, that this species is based only on a description and lacks a type strain available as pure culture. Furthermore, the ciliate culture Euplotes aediculatus ATCC 30859, on which the description of the species was based, is no longer available. We found another Euplotes aediculatus culture (Ammermann) sharing the same origin with ATCC 30859 and proved the identity of the endosymbionts contained in the two cultures. A multilocus sequence comparison approach was used to estimate if the four strains currently classified as Polynucleobacter necessarius subsp. asymbioticus share ANI values with the endosymbiont in the Ammermann culture above or below the threshold for species demarcation. A significant correlation (R2 0.98, P<0.0001) between multilocus sequence similarity and ANI values of genome-sequenced strains enabled the prediction that it is highly unlikely that these four strains belong to the species P. necessarius. We propose reclassification of strains QLW-P1DMWA-1T (=DSM 18221T=CIP 109841T), MWH-MoK4T (=DSM 21495T=CIP 110977T), MWH-JaK3T (=DSM 21493T=CIP 110976T) and MWH-HuW1T (=DSM 21492T=CIP 110978T) as Polynucleobacter asymbioticus comb. nov., Polynucleobacter duraquae sp. nov., Polynucleobacter yangtzensis sp. nov. and Polynucleobacter sinensis sp. nov., respectively.

Collaboration


Dive into the Sami J. Taipale's collaboration.

Top Co-Authors

Avatar

Paula Kankaala

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Ursula Strandberg

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minna Hiltunen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge