Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samir Softic is active.

Publication


Featured researches published by Samir Softic.


Nature Immunology | 2004

Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway.

Christopher L. Karp; Leah M. Flick; Kiwon Park; Samir Softic; Todd M. Greer; Raquel Keledjian; Rong Yang; Jasmin Uddin; William B. Guggino; Sowsan F. Atabani; Yasmine Belkaid; Yan Xu; Jeffrey A. Whitsett; Frank J. Accurso; Marsha Wills-Karp; Nicos A. Petasis

In cystic fibrosis, dysregulated neutrophilic inflammation and chronic infection lead to progressive destruction of the airways. The underlying mechanisms have remained unclear. Lipoxins are anti-inflammatory lipid mediators that modulate neutrophilic inflammation. We report here that lipoxin concentrations in airway fluid were significantly suppressed in patients with cystic fibrosis compared to patients with other inflammatory lung conditions. We also show that administration of a metabolically stable lipoxin analog in a mouse model of the chronic airway inflammation and infection associated with cystic fibrosis suppressed neutrophilic inflammation, decreased pulmonary bacterial burden and attenuated disease severity. These findings suggest that there is a pathophysiologically important defect in lipoxin-mediated anti-inflammatory activity in the cystic fibrosis lung and that lipoxins have therapeutic potential in this lethal autosomal disease.


Hepatology | 2010

High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis†

Rohit Kohli; Michelle Kirby; Stavra A. Xanthakos; Samir Softic; Ariel E. Feldstein; Vijay Saxena; Peter H. Tang; Lili Miles; Michael V. Miles; William F. Balistreri; Stephen C. Woods; Randy J. Seeley

Diets high in saturated fat and fructose have been implicated in the development of obesity and nonalcoholic steatohepatitis (NASH) in humans. We hypothesized that mice exposed to a similar diet would develop NASH with fibrosis associated with increased hepatic oxidative stress that would be further reflected by increased plasma levels of the respiratory chain component, oxidized coenzyme Q9 (oxCoQ9). Adult male C57Bl/6 mice were randomly assigned to chow, high‐fat (HF), or high‐fat high‐carbohydrate (HFHC) diets for 16 weeks. The chow and HF mice had free access to pure water, whereas the HFHC group received water with 55% fructose and 45% sucrose (wt/vol). The HFHC and HF groups had increased body weight, body fat mass, fasting glucose, and were insulin‐resistant compared with chow mice. HF and HFHC consumed similar calories. Hepatic triglyceride content, plasma alanine aminotransferase, and liver weight were significantly increased in HF and HFHC mice compared with chow mice. Plasma cholesterol (P < 0.001), histological hepatic fibrosis, liver hydroxyproline content (P = 0.006), collagen 1 messenger RNA (P = 0.003), CD11b‐F4/80+Gr1+ monocytes (P < 0.0001), transforming growth factor β1 mRNA (P = 0.04), and α‐smooth muscle actin messenger RNA (P = 0.001) levels were significantly increased in HFHC mice. Hepatic oxidative stress, as indicated by liver superoxide expression (P = 0.002), 4‐hydroxynonenal, and plasma oxCoQ9 (P < 0.001) levels, was highest in HFHC mice. Conclusion: These findings demonstrate that nongenetically modified mice maintained on an HFHC diet in addition to developing obesity have increased hepatic ROS and a NASH‐like phenotype with significant fibrosis. Plasma oxCoQ9 correlated with fibrosis progression. The mechanism of fibrosis may involve fructose inducing increased ROS associated with CD11b+F4/80+Gr1+ hepatic macrophage aggregation, resulting in transforming growth factor β1–signaled collagen deposition and histologically visible hepatic fibrosis. (HEPATOLOGY 2010)


Cell Metabolism | 2015

Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome

Siegfried Ussar; Nicholas W. Griffin; Olivier Bezy; Shiho Fujisaka; Sara G. Vienberg; Samir Softic; Luxue Deng; Lynn Bry; Jeffrey I. Gordon; C. Ronald Kahn

Obesity, diabetes, and metabolic syndrome result from complex interactions between genetic and environmental factors, including the gut microbiota. To dissect these interactions, we utilized three commonly used inbred strains of mice-obesity/diabetes-prone C57Bl/6J mice, obesity/diabetes-resistant 129S1/SvImJ from Jackson Laboratory, and obesity-prone but diabetes-resistant 129S6/SvEvTac from Taconic-plus three derivative lines generated by breeding these strains in a new, common environment. Analysis of metabolic parameters and gut microbiota in all strains and their environmentally normalized derivatives revealed strong interactions between microbiota, diet, breeding site, and metabolic phenotype. Strain-dependent and strain-independent correlations were found between specific microbiota and phenotypes, some of which could be transferred to germ-free recipient animals by fecal transplantation. Environmental reprogramming of microbiota resulted in 129S6/SvEvTac becoming obesity resistant. Thus, development of obesity/metabolic syndrome is the result of interactions between gut microbiota, host genetics, and diet. In permissive genetic backgrounds, environmental reprograming of microbiota can ameliorate development of metabolic syndrome.


Digestive Diseases and Sciences | 2016

Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease

Samir Softic; David E. Cohen; C. Ronald Kahn

Abstract Nonalcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome. Overconsumption of high-fat diet (HFD) and increased intake of sugar-sweetened beverages are major risk factors for development of NAFLD. Today the most commonly consumed sugar is high fructose corn syrup. Hepatic lipids may be derived from dietary intake, esterification of plasma free fatty acids (FFA) or hepatic de novo lipogenesis (DNL). A central abnormality in NAFLD is enhanced DNL. Hepatic DNL is increased in individuals with NAFLD, while the contribution of dietary fat and plasma FFA to hepatic lipids is not significantly altered. The importance of DNL in NAFLD is further established in mouse studies with knockout of genes involved in this process. Dietary fructose increases levels of enzymes involved in DNL even more strongly than HFD. Several properties of fructose metabolism make it particularly lipogenic. Fructose is absorbed via portal vein and delivered to the liver in much higher concentrations as compared to other tissues. Fructose increases protein levels of all DNL enzymes during its conversion into triglycerides. Additionally, fructose supports lipogenesis in the setting of insulin resistance as fructose does not require insulin for its metabolism, and it directly stimulates SREBP1c, a major transcriptional regulator of DNL. Fructose also leads to ATP depletion and suppression of mitochondrial fatty acid oxidation, resulting in increased production of reactive oxygen species. Furthermore, fructose promotes ER stress and uric acid formation, additional insulin independent pathways leading to DNL. In summary, fructose metabolism supports DNL more strongly than HFD and hepatic DNL is a central abnormality in NAFLD. Disrupting fructose metabolism in the liver may provide a new therapeutic option for the treatment of NAFLD.


Hepatology | 2014

IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice

Isaac T.W. Harley; Traci E. Stankiewicz; Daniel A. Giles; Samir Softic; Leah M. Flick; Monica Cappelletti; Rachel Sheridan; Stavra A. Xanthakos; Kris A. Steinbrecher; R. Balfour Sartor; Rohit Kohli; Christopher L. Karp; Senad Divanovic

Inflammation plays a central pathogenic role in the pernicious metabolic and end‐organ sequelae of obesity. Among these sequelae, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the developed world. The twinned observations that obesity is associated with increased activation of the interleukin (IL)‐17 axis and that this axis can regulate liver damage in diverse contexts prompted us to address the role of IL‐17RA signaling in the progression of NAFLD. We further examined whether microbe‐driven IL‐17A regulated NAFLD development and progression. We show here that IL‐17RA−/− mice respond to high‐fat diet stress with significantly greater weight gain, visceral adiposity, and hepatic steatosis than wild‐type controls. However, obesity‐driven lipid accumulation was uncoupled from its end‐organ consequences in IL‐17RA−/− mice, which exhibited decreased steatohepatitis, nicotinamide adenine dinucleotide phosphate (NADPH)‐oxidase enzyme expression, and hepatocellular damage. Neutralization of IL‐17A significantly reduced obesity‐driven hepatocellular damage in wild‐type mice. Further, colonization of mice with segmented filamentous bacteria (SFB), a commensal that induces IL‐17A production, exacerbated obesity‐induced hepatocellular damage. In contrast, SFB depletion protected from obesity‐induced hepatocellular damage. Conclusion: These data indicate that obesity‐driven activation of the IL‐17 axis is central to the development and progression of NAFLD to steatohepatitis and identify the IL‐17 pathway as a novel therapeutic target in this condition. (Hepatology 2014;59:1830–1839)


Physiological Reports | 2013

Subcutaneous adipose tissue transplantation in diet‐induced obese mice attenuates metabolic dysregulation while removal exacerbates it

Michelle T. Foster; Samir Softic; Jody L. Caldwell; Rohit Kohli; Annette D. deKloet; Randy J. Seeley

Adipose tissue distribution is an important determinant of obesity‐related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance, and type‐2‐diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet‐induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the liver via the portal vein. This metabolic pathology is not exclusively due to increases in visceral adipose tissue mass but also driven by intrinsic characteristics of this particular depot. In Experiment 1, high fat diet (HFD)‐induced obese control (abdominal incision, but no fat manipulation) or autologous (excision and subsequent relocation of adipose tissue) subcutaneous tissue transplantation to the visceral cavity. In Experiment 2, mice received control surgery, subcutaneous fat removal, or heterotransplantation (tissue from obese donor) to the visceral cavity. Body composition analysis and glucose tolerance tests were performed 4 weeks postsurgery. Adipose mass and portal adipokines, cytokines, lipids, and insulin were measured from samples collected at 5 weeks postsurgery. Auto‐ and heterotransplantation in obese mice improved glucose tolerance, decreased systemic insulin concentration, and reduced portal lipids and hepatic triglycerides compared with HFD controls. Heterotransplantation of subcutaneous adipose tissue to the visceral cavity in obese mice restored hepatic insulin sensitivity and reduced insulin and leptin concentrations to chow control levels. Fat removal, however, as an independent procedure exacerbated obesity‐induced increases in leptin and insulin concentrations. Overall subcutaneous adipose tissue protects against aspects of metabolic dysregulation in obese mice. Transplantation‐induced improvements do not occur via enhanced storage of lipid in adipose tissue, however, altered hepatic lipid regulation may play a contributory role.


Nature Medicine | 2017

Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling

Daniel A. Giles; Maria E. Moreno-Fernandez; Traci E. Stankiewicz; Simon Graspeuntner; Monica Cappelletti; David Wu; Rajib Mukherjee; Calvin C. Chan; Matthew J. Lawson; Jared Klarquist; Annika Sünderhauf; Samir Softic; C. Ronald Kahn; Kerstin Stemmer; Yoichiro Iwakura; Bruce J. Aronow; Rebekah Karns; Kris A. Steinbrecher; Christopher L. Karp; Rachel Sheridan; Shiva Kumar Shanmukhappa; Damien Reynaud; David B Haslam; Christian Sina; Jan Rupp; Simon P. Hogan; Senad Divanovic

Nonalcoholic fatty liver disease (NAFLD), a common prelude to cirrhosis and hepatocellular carcinoma, is the most common chronic liver disease worldwide. Defining the molecular mechanisms underlying the pathogenesis of NAFLD has been hampered by a lack of animal models that closely recapitulate the severe end of the disease spectrum in humans, including bridging hepatic fibrosis. Here we demonstrate that a novel experimental model employing thermoneutral housing, as opposed to standard housing, resulted in lower stress-driven production of corticosterone, augmented mouse proinflammatory immune responses and markedly exacerbated high-fat diet (HFD)-induced NAFLD pathogenesis. Disease exacerbation at thermoneutrality was conserved across multiple mouse strains and was associated with augmented intestinal permeability, an altered microbiome and activation of inflammatory pathways that are associated with the disease in humans. Depletion of Gram-negative microbiota, hematopoietic cell deletion of Toll-like receptor 4 (TLR4) and inactivation of the IL-17 axis resulted in altered immune responsiveness and protection from thermoneutral-housing-driven NAFLD amplification. Finally, female mice, typically resistant to HFD-induced obesity and NAFLD, develop full disease characteristics at thermoneutrality. Thus, thermoneutral housing provides a sex-independent model of exacerbated NAFLD in mice and represents a novel approach for interrogation of the cellular and molecular mechanisms underlying disease pathogenesis.


Journal of Clinical Investigation | 2016

Antibiotic effects on gut microbiota and metabolism are host dependent.

Shiho Fujisaka; Siegfried Ussar; Clary B. Clish; Suzanne Devkota; Jonathan M. Dreyfuss; Masaji Sakaguchi; Marion Soto; Masahiro Konishi; Samir Softic; Emrah Altindis; Ning Li; Georg K. Gerber; Lynn Bry; C. Ronald Kahn

Interactions of diet, gut microbiota, and host genetics play important roles in the development of obesity and insulin resistance. Here, we have investigated the molecular links between gut microbiota, insulin resistance, and glucose metabolism in 3 inbred mouse strains with differing susceptibilities to metabolic syndrome using diet and antibiotic treatment. Antibiotic treatment altered intestinal microbiota, decreased tissue inflammation, improved insulin signaling in basal and stimulated states, and improved glucose metabolism in obesity- and diabetes-prone C57BL/6J mice on a high-fat diet (HFD). Many of these changes were reproduced by the transfer of gut microbiota from antibiotic-treated donors to germ-free or germ-depleted mice. These physiological changes closely correlated with changes in serum bile acids and levels of the antiinflammatory bile acid receptor Takeda G protein-coupled receptor 5 (TGR5) and were partially recapitulated by treatment with a TGR5 agonist. In contrast, antibiotic treatment of HFD-fed, obesity-resistant 129S1 and obesity-prone 129S6 mice did not improve metabolism, despite changes in microbiota and bile acids. These mice also failed to show a reduction in inflammatory gene expression in response to the TGR5 agonist. Thus, changes in bile acid and inflammatory signaling, insulin resistance, and glucose metabolism driven by an HFD can be modified by antibiotic-induced changes in gut microbiota; however, these effects depend on important interactions with the hosts genetic background and inflammatory potential.


Diabetes | 2016

Lipodystrophy Due to Adipose Tissue Specific Insulin Receptor Knockout Results in Progressive NAFLD

Samir Softic; Jeremie Boucher; Marie H. Solheim; Shiho Fujisaka; Max-Felix Haering; Erica P. Homan; Jonathon N. Winnay; Antonio R. Perez-Atayde; C. Ronald Kahn

Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels.


Diabetes | 2016

Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function.

Jeremie Boucher; Samir Softic; El Ouaamari A; Megan T. Krumpoch; André Kleinridders; Rohit N. Kulkarni; Brian T. O'Neill; C R Kahn

To determine the roles of insulin and insulin-like growth factor 1 (IGF-1) action in adipose tissue, we created mice lacking the insulin receptor (IR), IGF-1 receptor (IGF1R), or both using Cre-recombinase driven by the adiponectin promoter. Mice lacking IGF1R only (F-IGFRKO) had a ∼25% reduction in white adipose tissue (WAT) and brown adipose tissue (BAT), whereas mice lacking both IR and IGF1R (F-IR/IGFRKO) showed an almost complete absence of WAT and BAT. Interestingly, mice lacking only the IR (F-IRKO) had a 95% reduction in WAT, but a paradoxical 50% increase in BAT with accumulation of large unilocular lipid droplets. Both F-IRKO and F-IR/IGFRKO mice were unable to maintain body temperature in the cold and developed severe diabetes, ectopic lipid accumulation in liver and muscle, and pancreatic islet hyperplasia. Leptin treatment normalized blood glucose levels in both groups. Glucose levels also improved spontaneously by 1 year of age, despite sustained lipodystrophy and insulin resistance. Thus, loss of IR is sufficient to disrupt white fat formation, but not brown fat formation and/or maintenance, although it is required for normal BAT function and temperature homeostasis. IGF1R has only a modest contribution to both WAT and BAT formation and function.

Collaboration


Dive into the Samir Softic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rohit Kohli

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michelle Kirby

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge