Samira Kiani
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samira Kiani.
Nature Biotechnology | 2011
Dirk Hockemeyer; Haoyi Wang; Samira Kiani; Christine S. Lai; Qing Gao; John P. Cassady; Gregory J. Cost; Lei Zhang; Yolanda Santiago; Jeffrey C. Miller; Bryan Zeitler; Jennifer M. Cherone; Xiangdong Meng; Sarah J. Hinkley; Edward J. Rebar; Philip D. Gregory; Fyodor D. Urnov; Rudolf Jaenisch
Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator–like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).
Nature Methods | 2015
Alejandro Chavez; Jonathan Scheiman; Suhani Vora; Benjamin W. Pruitt; Marcelle Tuttle; Eswar Prasad R. Iyer; Shuailiang Lin; Samira Kiani; Christopher D. Guzman; Daniel J Wiegand; Dmitry Ter-Ovanesyan; Jonathan L. Braff; Noah Davidsohn; Benjamin E. Housden; Norbert Perrimon; Ron Weiss; John Aach; James J. Collins; George M. Church
The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However, modest levels of gene activation have limited potential applications. We describe an improved transcriptional regulator obtained through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to nuclease-null Cas9. We demonstrate its utility in activating endogenous coding and noncoding genes, targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).
Nature Methods | 2014
Samira Kiani; Jacob Beal; Mohammad Reza Ebrahimkhani; Jin Huh; Richard N Hall; Zhen Xie; Yinqing Li; Ron Weiss
A key obstacle to creating sophisticated genetic circuits has been the lack of scalable device libraries. Here we present a modular transcriptional repression architecture based on clustered regularly interspaced palindromic repeats (CRISPR) system and examine approaches for regulated expression of guide RNAs in human cells. Subsequently we demonstrate that CRISPR regulatory devices can be layered to create functional cascaded circuits, which provide a valuable toolbox for engineering purposes.
Gut | 2006
Mohammad Reza Ebrahimkhani; Samira Kiani; Fiona Oakley; Timothy Kendall; Ahmad Shariftabrizi; Seyed Mohammad Tavangar; Leila Moezi; Seyedmehdi Payabvash; Alaleh Karoon; Houman Hoseininik; Derek A. Mann; Kevin Moore; Ali R. Mani; Ahmad Reza Dehpour
Aim: The aim of this study was to investigate the hypothesis that the opioid system is involved in the development of hepatic fibrosis. Methods: The effect of naltrexone (an opioid receptor antagonist) on hepatic fibrosis in bile duct ligated (BDL) or sham rats was assessed by histology and hepatic hydroxyproline levels. Liver matrix metalloproteinase 2 (MMP-2) was measured by zymography, and α smooth muscle actin (α-SMA) and CD45 (leucocyte common antigen) by immunohistochemistry. The redox state of the liver was assessed by hepatic glutathione (GSH)/oxidised glutathione (GSSG) and S-nitrosothiol levels. Subtypes of opioid receptors in cultured hepatic stellate cells (HSCs) were characterised by reverse transcriptase-polymerase chain reaction, and the effects of selective δ opioid receptor agonists on cellular proliferation, tissue inhibitor of metalloproteinase 1 (TIMP-1), and procollagen I expression in HSCs determined. Results: Naltrexone markedly attenuated the development of hepatic fibrosis as well as MMP-2 activity (p<0.01), and decreased the number of activated HSCs in BDL rats (p<0.05). The development of biliary cirrhosis altered the redox state with a decreased hepatic GSH/GSSG ratio and increased concentrations of hepatic S-nitrosothiols, which were partially or completely normalised by treatment with naltrexone, respectively. Activated rat HSCs exhibited expression of δ1 receptors, with increased procollagen I expression, and increased TIMP-1 expression in response to δ1 and δ2 agonists, respectively. Conclusions: This is the first study to demonstrate that administration of an opioid antagonist prevents the development of hepatic fibrosis in cirrhosis. Opioids can influence liver fibrogenesis directly via the effect on HSCs and regulation of the redox sensitive mechanisms in the liver.
Stem cell reports | 2014
Ryan Forster; Kunitoshi Chiba; Lorian Schaeffer; Samuel Regalado; Christine S. Lai; Qing Gao; Samira Kiani; Henner F. Farin; Hans Clevers; Gregory J. Cost; Andy Chan; Edward J. Rebar; Fyodor D. Urnov; Philip D. Gregory; Lior Pachter; Rudolf Jaenisch; Dirk Hockemeyer
Summary Genetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many applications are limited due to the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. Here, using an endogenous LGR5-GFP reporter, we derived adult stem cells from hPSCs that gave rise to functional human intestinal tissue comprising all major cell types of the intestine. Histological and functional analyses revealed that such human organoid cultures could be derived with high purity and with a composition and morphology similar to those of cultures obtained from human biopsies. Importantly, hPSC-derived organoids responded to the canonical signaling pathways that control self-renewal and differentiation in the adult human intestinal stem cell compartment. This adult stem cell system provides a platform for studying human intestinal disease in vitro using genetically engineered hPSCs.
Nature Communications | 2016
Patrick Guye; Mohammad Reza Ebrahimkhani; Nathan Kipniss; Jeremy J. Velazquez; Eldi Schoenfeld; Samira Kiani; Linda G. Griffith; Ron Weiss
Human induced pluripotent stem cells (hiPSCs) have potential for personalized and regenerative medicine. While most of the methods using these cells have focused on deriving homogenous populations of specialized cells, there has been modest success in producing hiPSC-derived organotypic tissues or organoids. Here we present a novel approach for generating and then co-differentiating hiPSC-derived progenitors. With a genetically engineered pulse of GATA-binding protein 6 (GATA6) expression, we initiate rapid emergence of all three germ layers as a complex function of GATA6 expression levels and tissue context. Within 2 weeks we obtain a complex tissue that recapitulates early developmental processes and exhibits a liver bud-like phenotype, including haematopoietic and stromal cells as well as a neuronal niche. Collectively, our approach demonstrates derivation of complex tissues from hiPSCs using a single autologous hiPSCs as source and generates a range of stromal cells that co-develop with parenchymal cells to form tissues.
ACS Synthetic Biology | 2015
Noah Davidsohn; Jacob Beal; Samira Kiani; Aaron Adler; Fusun Yaman; Yinqing Li; Zhen Xie; Ron Weiss
A long-standing goal of synthetic biology is to rapidly engineer new regulatory circuits from simpler devices. As circuit complexity grows, it becomes increasingly important to guide design with quantitative models, but previous efforts have been hindered by lack of predictive accuracy. To address this, we developed Empirical Quantitative Incremental Prediction (EQuIP), a new method for accurate prediction of genetic regulatory network behavior from detailed characterizations of their components. In EQuIP, precisely calibrated time-series and dosage-response assays are used to construct hybrid phenotypic/mechanistic models of regulatory processes. This hybrid method ensures that model parameters match observable phenomena, using phenotypic formulation where current hypotheses about biological mechanisms do not agree closely with experimental observations. We demonstrate EQuIPs precision at predicting distributions of cell behaviors for six transcriptional cascades and three feed-forward circuits in mammalian cells. Our cascade predictions have only 1.6-fold mean error over a 261-fold mean range of fluorescence variation, owing primarily to calibrated measurements and piecewise-linear models. Predictions for three feed-forward circuits had a 2.0-fold mean error on a 333-fold mean range, further demonstrating that EQuIP can scale to more complex systems. Such accurate predictions will foster reliable forward engineering of complex biological circuits from libraries of standardized devices.
Epilepsy Research | 2005
Kiarash Riazi; Hooman Honar; Houman Homayoun; Narges Rashidi; Samira Kiani; Mohammad Reza Ebrahimkhani; Ali Reza Noorian; Kamyar Ghaffari; Ali Jannati; Ahmad Reza Dehpour
Recent demonstrations of the anticonvulsant properties of agmatine suggest it may be considered as a potential adjunct for protection against seizure. We investigated the possibility of an additive anticonvulsant effect between low doses of agmatine and morphine. The thresholds for the clonic seizures induced by the intravenous administration of gamma-aminobutyric acid (GABA)-antagonist, pentylenetetrazole (PTZ) were assessed in mice. Morphine at lower doses (1-3mg/kg) increased and at higher doses (30, 60 mg/kg) decreased the seizure threshold. Pretreatment with a per se non-effective dose of agmatine (1mg/kg) potentiated the anticonvulsant effect of morphine. The combination of subeffective doses of agmatine and morphine led to potent anticonvulsant effects. The pro-convulsant effect of morphine was attenuated by agmatine. Yohimbine with a dose (1mg/kg) incapable of affecting seizure threshold reversed the effect of agmatine on both anticonvulsant and pro-convulsant effects of morphine. These results suggest that agmatine potentiates the anticonvulsant effect of morphine and alpha 2-adrenoceptors may be involved in this effect.
European Journal of Pharmacology | 2009
Samira Kiani; Behzad Valizadeh; Bahram Hormazdi; Hoda Samadi; Tahereh Najafi; Morteza Samini; Ahmad Reza Dehpour
Cirrhosis is associated with impairment of the male reproductive system, hypogonadism and feminization. It is important to rule out whether the impairment in the reproductive system exists earlier in the course of cholestatic liver disease to target effective therapies at the best time point. In this study we investigated the role of endogenous opioid and nitric oxide system in alterations of the reproductive system in male rats. We performed sham or bile duct ligation surgery on male Sprague-Dawley rats and treated the animals for seven days with saline, naltrexone, an opioid receptor blocker (20 mg/kg) and N (G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor (10 mg/kg). We then evaluated the plasma level of testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH), sperm count and motility as well as biomarkers of cholestasis and nitric oxide productions. The results showed that following cholestasis, total testosterone level decrease and LH level increase in plasma of cholestatic rats and treatment with L-NAME and naltrexone could improve the plasma level of testosterone. Naltrexone could decrease the elevated level of LH in cholestatic animals. In addition, the weight of seminal vesicles and prostate significantly decreased in cholestasis as compared to the control group and treatment with L-NAME and naltrexone could improve the weights of the two organs in cholestasis. Our results demonstrate for the first time that the male reproductive system is impaired early in cholestasis and that endogenous opioid and nitric oxide system contribute to these impairments in the early course of the disease.
Journal of Gastroenterology and Hepatology | 2007
Samira Kiani; Mohammad Reza Ebrahimkhani; Ahmad Shariftabrizi; Behzad Doratotaj; Seyedmehdi Payabvash; Kiarash Riazi; Mehdi Dehghani; Hooman Honar; Alaleh Karoon; Massoud Amanlou; Seyed Mohammad Tavangar; Ahmad Reza Dehpour
Background: Following bile duct ligation (BDL) endogenous opioids accumulate in plasma and play a role in the pathophysiology and manifestation of cholestasis. Evidence of centrally mediated induction of liver injury by exogenous opioid agonist administration, prompts the question of whether opioid receptor blockade by naltrexone can affect cholestasis‐induced liver injury.