Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel Abiven is active.

Publication


Featured researches published by Samuel Abiven.


Nature | 2011

Persistence of soil organic matter as an ecosystem property

Michael W. I. Schmidt; Margaret S. Torn; Samuel Abiven; Thorsten Dittmar; Georg Guggenberger; Ivan A. Janssens; Markus Kleber; Ingrid Kögel-Knabner; Johannes Lehmann; David A. C. Manning; P. Nannipieri; Daniel P. Rasse; Steve Weiner; Susan E. Trumbore

Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.


Biology and Fertility of Soils | 2005

Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality

Samuel Abiven; Sylvie Recous; Victor Reyes; Robert Oliver

The influence of biochemical characteristics of 15 crop residues on C and N mineralisation in soil was investigated by following the decomposition of roots, stems and leaves of four subtropical species and one temperate species buried into the soil. The C, N and polyphenols contents were measured in different biochemical pools obtained from residues of the different organs. The mineralisation of root C was significantly lower than that of leaves and stems. Chemical analysis showed a higher polyphenol content in the leaves and a higher ligninlike content in the roots. Carbon and N mineralisation were simulated with the STICS decomposition submodel and tested against the data set. The model predicted leaf and stem C mineralisation for all five species fairly accurately, but failed to predict root C mineralisation, indirectly revealing the more complex composition of the root tissue. The results showed the interest of separately considering the different plant parts when studying plant residue decomposition and the need to develop other methods of residue quality characterisation to improve the prediction of residue decomposition.


Environmental Research Letters | 2013

Heterogeneous global crop yield response to biochar: a meta-regression analysis

Andrew Crane-Droesch; Samuel Abiven; Simon Jeffery; Margaret S. Torn

Biochar may contribute to climate change mitigation at negative cost by sequestering photosynthetically fixed carbon in soil while increasing crop yields. The magnitude of biochars potential in this regard will depend on crop yield benefits, which have not been well-characterized across different soils and biochars. Using data from 84 studies, we employ meta-analytical, missing data, and semiparametric statistical methods to explain heterogeneity in crop yield responses across different soils, biochars, and agricultural management factors, and then estimate potential changes in yield across different soil environments globally. We find that soil cation exchange capacity and organic carbon were strong predictors of yield response, with low cation exchange and low carbon associated with positive response. We also find that yield response increases over time since initial application, compared to non-biochar controls. High reported soil clay content and low soil pH were weaker predictors of higher yield response. No biochar parameters in our dataset—biochar pH, percentage carbon content, or temperature of pyrolysis—were significant predictors of yield impacts. Projecting our fitted model onto a global soil database, we find the largest potential increases in areas with highly weathered soils, such as those characterizing much of the humid tropics. Richer soils characterizing much of the worlds important agricultural areas appear to be less likely to benefit from biochar.


Gcb Bioenergy | 2015

A meta‐analysis on pyrogenic organic matter induced priming effect

Bernardo Maestrini; P. Nannipieri; Samuel Abiven

Pyrogenic organic matter (PyOM) is considered an important soil carbon (C) sink. However, there are evidences that its addition to soil may induce a priming effect (PE) thus influencing its C abatement potential. The direction, the size and the mechanisms responsible for PyOM induced PE are far from being understood. We collected approximately 650 data points from 18 studies to analyse the characteristics of the PE induced by PyOM. The database was divided between the PE induced on the native soil organic matter and on fresh organic matter. Most of the studies were short‐term incubation therefore the projections of findings on the long term may be critical. Our findings indicate that over 1 year PyOM induces an average positive PE of 0.3 mg C g−1 soil on native soil organic matter and a PE of approximately the same size but opposite direction on fresh organic matter. We studied the correlation of PE with several properties of soil, of the added PyOM, and time after PyOM addition. We found that PyOM primes positively the native soil organic matter in the first 20 days while negative PE appears in a later stage. Negative PE was correlated with the soil C content. PyOM characterized by a low C content induced a higher positive PE on native soil organic carbon. No correlation was found between the factors record in our database and the PE induced on the fresh organic matter. We reviewed the mechanisms proposed in literature to explain PE and discussed them based on findings from our meta‐analysis. We believe that the presence of a labile fraction in PyOM may trigger the activity of soil microorganisms on the short term and therefore induce a positive PE, while on the long term PyOM may induce a negative PE by promoting physical protection mechanisms.


Journal of Agricultural and Food Chemistry | 2014

Surface Properties and Chemical Composition of Corncob and Miscanthus Biochars: Effects of Production Temperature and Method

Alice Budai; Liang Wang; Morten Grønli; Line Tau Strand; Michael Jerry Antal; Samuel Abiven; Alba Dieguez-Alonso; Andrés Anca-Couce; Daniel P. Rasse

Biochar properties vary, and characterization of biochars is necessary for assessing their potential to sequester carbon and improve soil functions. This study aimed at assessing key surface properties of agronomic relevance for products from slow pyrolysis at 250-800 °C, hydrothermal carbonization (HTC), and flash carbonization. The study further aimed at relating surface properties to current characterization indicators. The results suggest that biochar chemical composition can be inferred from volatile matter (VM) and is consistent for corncob and miscanthus feedstocks and for the three tested production methods. High surface area was reached within a narrow temperature range around 600 °C, whereas cation exchange capacity (CEC) peaked at lower temperatures. CEC and pH values of HTC chars differed from those of slow pyrolysis biochars. Neither CEC nor surface area correlated well with VM or atomic ratios. These results suggest that VM and atomic ratios H/C and O/C are good indicators of the degree of carbonization but poor predictors of the agronomic properties of biochar.


Frontiers of Earth Science in China | 2016

Pyrogenic Carbon in Soils: A Literature-Based Inventory and a Global Estimation of Its Content in Soil Organic Carbon and Stocks

Moritz Reisser; Ross S. Purves; Michael W. I. Schmidt; Samuel Abiven

Pyrogenic carbon (PyC) is considered one of the most stable components in soil and can represent more than 30% of total soil organic carbon (SOC). However, few estimates of global PyC stock or distribution exist and thus PyC is not included in any global carbon cycle models, despite its potential major relevance for the soil pool. To obtain a global picture, we reviewed the literature for published PyC content in SOC data. We generated the first PyC database including more than 560 measurements from 55 studies. Despite limitations due to heterogeneous distribution of the studied locations and gaps in the database, we were able to produce a worldwide PyC inventory. We found that global PyC represent on average 13.7% of the SOC and can be even up to 60%, making it one of the largest groups of identifiable compounds in soil, together with polysaccharides. We observed a consistent range of PyC content in SOC, despite the diverse methods of quantification. We tested the PyC content against different environmental explanatory variables: fire and land use (fire characteristics, land use, net primary productivity), climate (temperature, precipitation, climatic zones, altitude) and pedogenic properties (clay content, pH, SOC content). Surprisingly, soil properties explain PyC content the most. Soils with clay content higher than 50% contain significantly more PyC (> 30% of the SOC) than with clay content lower than 5% (< 6% of the SOC). Alkaline soils contain at least 50% more PyC than acidic soils. Furthermore, climatic conditions, represented by climatic zone or mean temperature or precipitation, correlate significantly with the PyC content. By contrast, fire characteristics could only explain PyC content, if site-specific information was available. Datasets derived from remote sensing did not explain the PyC content. To show the potential of this database, we used it in combination with other global datasets to create a global worldwide PyC content and a stock estimation, which resulted in around 200Pg PyC for the uppermost 2 meters. These modelled estimates indicated a clear mismatch between the location of the current PyC studies and the geographical zones where we expect high PyC stocks.


Biology and Fertility of Soils | 2011

Charcoal does not change the decomposition rate of mixed litters in a mineral cambisol: a controlled conditions study

Samuel Abiven; Romano Andreoli

It has been recently shown that the presence of charcoal might promote humus decomposition in the soil. We investigated the decomposition rate of charcoal and litters of different biochemical quality mixed together in a soil incubation under controlled conditions. Despite the large range of organic substrate quality used in this study, we did not find any difference in the decomposition between the average of two individual substrates decomposing separately and the same substrates mixed together. We concluded that charcoal does not always promote other organic matter decomposition and that its particular effect might depend on various factors, for example, soil properties.


Plant and Soil | 2011

Lignin content and chemical characteristics in maize and wheat vary between plant organs and growth stages: consequences for assessing lignin dynamics in soil

Samuel Abiven; Alexander Heim; Michael W. I. Schmidt

Assessing lignin turnover in soil on the basis of a 13C natural abundance labeling approach relies on the assumption that chemical characteristics of labeled and control plant inputs are similar and that the 13C content difference between labeled and control plant inputs is constant within the plant parts. We analyzed lignin in soils, roots, stems and leaves of wheat and maize at different stages of growth using the cupric oxide oxidation method. In both plants, lignin concentrations increased with growth, particularly during grain filling. Maize contained more cinnamyl moieties than wheat. Roots had higher lignin contents (especially cinnamyl moieties) than stems and leaves, and seemed to contribute more to the total soil lignin than the aboveground parts. The isotopic differences (∆ δ13C) of lignin phenols were not significantly different (p > 0.05) between plant organs, confirming assumptions underlying the natural abundance 13C labeling approach. Our data show that lignin content and phenol distribution can vary between plant organs and with the time of harvest. Consequently, the amount of annual lignin input may vary as a function of root amount and harvest date, and thus can affect the calculated apparent turnover times of lignin in natural abundance 13C labeling experiments.


Journal of Visualized Experiments | 2016

Characterization, Quantification and Compound-specific Isotopic Analysis of Pyrogenic Carbon Using Benzene Polycarboxylic Acids (BPCA)

Daniel B. Wiedemeier; Susan Q. Lang; Merle Gierga; Samuel Abiven; Stefano M. Bernasconi; Gretchen L. Früh-Green; Irka Hajdas; Ulrich M. Hanke; Michael Hilf; Cameron McIntyre; Maximilian P. W. Scheider; Rienk H. Smittenberg; Lukas Wacker; Guido L. B. Wiesenberg; Michael W. I. Schmidt

Fire-derived, pyrogenic carbon (PyC), sometimes called black carbon (BC), is the carbonaceous solid residue of biomass and fossil fuel combustion, such as char and soot. PyC is ubiquitous in the environment due to its long persistence, and its abundance might even increase with the projected increase in global wildfire activity and the continued burning of fossil fuel. PyC is also increasingly produced from the industrial pyrolysis of organic wastes, which yields charred soil amendments (biochar). Moreover, the emergence of nanotechnology may also result in the release of PyC-like compounds to the environment. It is thus a high priority to reliably detect, characterize and quantify these charred materials in order to investigate their environmental properties and to understand their role in the carbon cycle. Here, we present the benzene polycarboxylic acid (BPCA) method, which allows the simultaneous assessment of PyCs characteristics, quantity and isotopic composition (13C and 14C) on a molecular level. The method is applicable to a very wide range of environmental sample materials and detects PyC over a broad range of the combustion continuum, i.e., it is sensitive to slightly charred biomass as well as high temperature chars and soot. The BPCA protocol presented here is simple to employ, highly reproducible, as well as easily extendable and modifiable to specific requirements. It thus provides a versatile tool for the investigation of PyC in various disciplines, ranging from archeology and environmental forensics to biochar and carbon cycling research.


Nature Geoscience | 2018

Global-scale evidence for the refractory nature of riverine black carbon

Alysha I. Coppola; Daniel B. Wiedemeier; Valier Galy; Negar Haghipour; Ulrich M. Hanke; Gabriela S. Nascimento; Muhammed Usman; Thomas M. Blattmann; Moritz Reisser; Chantal V. Freymond; Meixun Zhao; Britta Voss; Lukas Wacker; Enno Schefuß; Bernhard Peucker-Ehrenbrink; Samuel Abiven; Michael W. I. Schmidt; Timothy I. Eglinton

Wildfires and incomplete combustion of fossil fuel produce large amounts of black carbon. Black carbon production and transport are essential components of the carbon cycle. Constraining estimates of black carbon exported from land to ocean is critical, given ongoing changes in land use and climate, which affect fire occurrence and black carbon dynamics. Here, we present an inventory of the concentration and radiocarbon content (∆14C) of particulate black carbon for 18 rivers around the globe. We find that particulate black carbon accounts for about 15.8 ± 0.9% of river particulate organic carbon, and that fluxes of particulate black carbon co-vary with river-suspended sediment, indicating that particulate black carbon export is primarily controlled by erosion. River particulate black carbon is not exclusively from modern sources but is also aged in intermediate terrestrial carbon pools in several high-latitude rivers, with ages of up to 17,000 14C years. The flux-weighted 14C average age of particulate black carbon exported to oceans is 3,700 ± 400 14C years. We estimate that the annual global flux of particulate black carbon to the ocean is 0.017 to 0.037 Pg, accounting for 4 to 32% of the annually produced black carbon. When buried in marine sediments, particulate black carbon is sequestered to form a long-term sink for CO2.Particulate black carbon in rivers can have ages of up to 17,000 14C years before it is sequestered in the oceans, according to an inventory of particulate black carbon in 18 rivers across the globe.

Collaboration


Dive into the Samuel Abiven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret S. Torn

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge