Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel E. Bennett is active.

Publication


Featured researches published by Samuel E. Bennett.


Cell | 1996

MEIOTIC PACHYTENE ARREST IN MLH1-DEFICIENT MICE

Winfried Edelmann; Paula E. Cohen; Michael F. Kane; Kirkland Lau; Bernice E. Morrow; Samuel E. Bennett; Asad Umar; Thomas A. Kunkel; Giorgio Cattoretti; R. S. K. Chaganti; Jeffrey W. Pollard; Richard D. Kolodner; Raju Kucherlapati

Germ line mutations in DNA mismatch repair genes including MLH1 cause hereditary nonpolyposis colon cancer. To understand the role of MLH1 in normal growth and development, we generated mice that have a null mutation of this gene. Mice homozygous for this mutation show a replication error phenotype, and extracts of these cells are deficient in mismatch repair activity. Homozygous mutant males show normal mating behavior but have no detectable mature sperm. Examination of meiosis in these males reveals that the cells enter meiotic prophase and arrest at pachytene. Homozygous mutant females have normal estrous cycles and reproductive and mating behavior but are infertile. The phenotypes of the mlh1 mutant mice are distinct from those deficient in msh2 and pms2. The different phenotypes of the three types of mutant mice suggest that these three genes may have independent functions in mammalian meiosis.


Progress in Nucleic Acid Research and Molecular Biology | 1994

Uracil-Excision DNA Repair

Dale W. Mosbaugh; Samuel E. Bennett

Publisher Summary Uracil residues are introduced into prokaryotic and eukaryotic deoxyribonucleic acid (DNA) as a normal physiological process during DNA synthesis, and by spontaneous chemical modification of cytosine residues in DNA; thus, the acquisition of uracil in cellular DNA is unavoidable. However, the rate of uracil accumulation may vary significantly, depending on the ratio of deoxyuridine triphosphate (dUTP) to deoxythymidine triphosphate (dTTP) in intracellular pools and on whether the cells are exposed to cytosinedeaminating agents. The biological consequences of uracil residues in DNA may have cytotoxic, mutagenic, or lethal effects. An uncontrolled accumulation of the uracil residues in DNA leads to various perturbations of molecular events, ranging from altered protein-nucleic acid interactions to uracil-DNA degradation. The importance of eliminating uracil from DNA is underscored, by the observation that the uracil-DNA repair pathway of almost every organism examined, is remarkably similar. It appears that not only is one nucleotide DNA repair evident in E. coli as well as in human cells, but also that uracil-DNA glycosylase is one of the most highly conserved polypeptides yet identified.


The ISME Journal | 2014

Discovery of a SAR11 growth requirement for thiamin’s pyrimidine precursor and its distribution in the Sargasso Sea

Paul Carini; Emily O. Campbell; Jeff Morré; Sergio A. Sañudo-Wilhelmy; J. Cameron Thrash; Samuel E. Bennett; Ben Temperton; Tadhg P. Begley; Stephen J. Giovannoni

Vitamin traffic, the production of organic growth factors by some microbial community members and their use by other taxa, is being scrutinized as a potential explanation for the variation and highly connected behavior observed in ocean plankton by community network analysis. Thiamin (vitamin B1), a cofactor in many essential biochemical reactions that modify carbon–carbon bonds of organic compounds, is distributed in complex patterns at subpicomolar concentrations in the marine surface layer (0–300 m). Sequenced genomes from organisms belonging to the abundant and ubiquitous SAR11 clade of marine chemoheterotrophic bacteria contain genes coding for a complete thiamin biosynthetic pathway, except for thiC, encoding the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) synthase, which is required for de novo synthesis of thiamin’s pyrimidine moiety. Here we demonstrate that the SAR11 isolate ‘Candidatus Pelagibacter ubique’, strain HTCC1062, is auxotrophic for the thiamin precursor HMP, and cannot use exogenous thiamin for growth. In culture, strain HTCC1062 required 0.7 zeptomoles per cell (ca. 400 HMP molecules per cell). Measurements of dissolved HMP in the Sargasso Sea surface layer showed that HMP ranged from undetectable (detection limit: 2.4 pM) to 35.7 pM, with maximum concentrations coincident with the deep chlorophyll maximum. In culture, some marine cyanobacteria, microalgae and bacteria exuded HMP, and in the Western Sargasso Sea, HMP profiles changed between the morning and evening, suggesting a dynamic biological flux from producers to consumers.


Molecular and Cellular Biology | 2001

Inactivation of DNA Mismatch Repair by Increased Expression of Yeast MLH1

Polina V. Shcherbakova; Mark C. Hall; Marc S. Lewis; Samuel E. Bennett; Karla Martin; Pierre R. Bushel; Cynthia A. Afshari; Thomas A. Kunkel

ABSTRACT Inactivation of DNA mismatch repair by mutation or by transcriptional silencing of the MLH1 gene results in genome instability and cancer predisposition. We recently found (P. V. Shcherbakova and T. A. Kunkel, Mol. Cell. Biol. 19:3177–3183, 1999) that an elevated spontaneous mutation rate can also result from increased expression of yeast MLH1. Here we investigate the mechanism of this mutator effect. Hybridization of poly(A)+ mRNA to DNA microarrays containing 96.4% of yeast open reading frames revealed that MLH1overexpression did not induce changes in expression of other genes involved in DNA replication or repair. MLH1overexpression strongly enhanced spontaneous mutagenesis in yeast strains with defects in the 3′→5′ exonuclease activity of replicative DNA polymerases δ and ɛ but did not enhance the mutation rate in strains with deletions of MSH2, MLH1, orPMS1. This suggests that overexpression ofMLH1 inactivates mismatch repair of replication errors. Overexpression of the PMS1 gene alone caused a moderate increase in the mutation rate and strongly suppressed the mutator effect caused by MLH1 overexpression. The mutator effect was also reduced by a missense mutation in the MLH1 gene that disrupted Mlh1p-Pms1p interaction. Analytical ultracentrifugation experiments showed that purified Mlh1p forms a homodimer in solution, albeit with a K d of 3.14 μM, 36-fold higher than that for Mlh1p-Pms1p heterodimerization. These observations suggest that the mismatch repair defect in cells overexpressingMLH1 results from an imbalance in the levels of Mlh1p and Pms1p and that this imbalance might lead to formation of nonfunctional mismatch repair complexes containing Mlh1p homodimers.


Journal of Biological Chemistry | 1997

Site-directed Mutagenesis and Characterization of Uracil-DNA Glycosylase Inhibitor Protein ROLE OF SPECIFIC CARBOXYLIC AMINO ACIDS IN COMPLEX FORMATION WITH ESCHERICHIA COLI URACIL-DNA GLYCOSYLASE

Amy J. Lundquist; Richard D. Beger; Samuel E. Bennett; Philip H. Bolton; Dale W. Mosbaugh

Bacteriophage PBS2 uracil-DNA glycosylase inhibitor (Ugi) protein inactivates uracil-DNA glycosylase (Ung) by acting as a DNA mimic to bind Ung in an irreversible complex. Seven mutant Ugi proteins (E20I, E27A, E28L, E30L, E31L, D61G, and E78V) were created to assess the role of various negatively charged residues in the binding mechanism. Each mutant Ugi protein was purified and characterized with respect to inhibitor activity and Ung binding properties relative to the wild type Ugi. Analysis of the Ugi protein solution structures by nuclear magnetic resonance indicated that the mutant Ugi proteins were folded into the same general conformation as wild type Ugi. All seven of the Ugi proteins were capable of forming a Ung·Ugi complex but varied considerably in their individual ability to inhibit Ung activity. Like the wild type Ugi, five of the mutants formed an irreversible complex with Ung; however, the binding of Ugi E20I and E28L to Ung was shown to be reversible. The tertiary structure of [13C,15N]Ugi in complex with Ung was determined by solution state multi-dimensional nuclear magnetic resonance and compared with the unbound Ugi structure. Structural and functional analysis of these proteins have elucidated the two-step mechanism involved in Ung·Ugi association and irreversible complex formation.


Journal of Biological Chemistry | 1995

Tertiary Structure of Uracil-DNA Glycosylase Inhibitor Protein

Richard D. Beger; Suganthi Balasubramanian; Samuel E. Bennett; Dale W. Mosbaugh; Philip H. Bolton

The Bacillus subtilis bacteriophage PBS2 uracil-DNA glycosylase inhibitor (Ugi) is an acidic protein of 84 amino acids that inactivates uracil-DNA glycosylase from diverse organisms. The secondary structure of Ugi consists of five anti-parallel β-strands and two α-helices (Balasubramanian, S., Beger, R. D., Bennett, S. E., Mosbaugh, D. W., and Bolton, P. H.(1995) J. Biol. Chem. 270, 296-303). The tertiary structure of Ugi has been determined by solution state multidimensional nuclear magnetic resonance. The Ugi structure contains an area of highly negative electrostatic potential produced by the close proximity of a number of acidic residues. The unfavorable interactions between these acidic residues are apparently accommodated by the stability of the β-strands. This negatively charged region is likely to play an important role in the binding of Ugi to uracil-DNA glycosylase.


Journal of the American Society for Mass Spectrometry | 2015

Electron Capture Dissociation of Sodium-Adducted Peptides on a Modified Quadrupole/Time-of-Flight Mass Spectrometer

Valery G. Voinov; Peter D. Hoffman; Samuel E. Bennett; Joseph S. Beckman; Douglas F. Barofsky

AbstractElectron capture dissociation (ECD), which generally preserves the position of labile post-translational modifications, can be a powerful method for de novo sequencing of proteins and peptides. In this report, ECD product-ion mass spectra of singly and doubly sodiated, nonphosphorylated, and phosphorylated peptides are presented and compared with the ECD mass spectra of their protonated counterparts. ECD of doubly charged, singly sodiated peptides yielded essentially the same sequence information as was produced by the corresponding doubly protonated peptides. The presence of several sodium binding sites on the polypeptide backbone, however, resulted in more complicated spectra. This situation is aggravated by the zwitterionic equilibrium of the free acid peptide precursors. The product-ion spectra of doubly and triply charged peptides possessing two sodium ions were further complicated by the existence of isomers created by the differential distribution of sodium binding sites. Triply charged, phosphorylated precursors containing one sodium, wherein the sodium is attached exclusively to the PO4 group, were found to be as useful for sequence analysis as the fully protonated species. Although sodium adducts are generally minimized during sample preparation, it appears that they can nonetheless provide useful sequence information. Additionally, they enable straightforward identification of a peptide’s charge state, even on low-resolution instruments. The experiments were carried out using a radio frequency-free electromagnetostatic cell retrofitted into the collision-induced dissociation (CID) section of a hybrid quadrupole/time-of-flight tandem mass spectrometer. Graphical Abstractᅟ


Progress in Nucleic Acid Research and Molecular Biology | 2001

Uracil-initiated base excision DNA repair synthesis fidelity in human colon adenocarcinoma LoVo and Escherichia coli cell extracts.

Russell J. Sanderson; Samuel E. Bennett; Jung-Suk Sung; Dale W. Mosbaugh

The error frequency of uracil-initiated base excision repair (BER) DNA synthesis in human and Escherichia coli cell-free extracts was determined by an M13mp2 lacZ alpha DNA-based reversion assay. Heteroduplex M13mp2 DNA was constructed that contained a site-specific uracil target located opposite the first nucleotide position of opal codon 14 in the lacZ alpha gene. Human glioblastoma U251 and colon adenocarcinoma LoVo whole-cell extracts repaired the uracil residue to produce form I DNA that was resistant to subsequent in vitro cleavage by E. coli uracil-DNA glycosylase (Ung) and endonuclease IV, indicating that complete uracil-initiated BER repair had occurred. Characterization of the BER reactions revealed that (1) the majority of uracil-DNA repair was initiated by a uracil-DNA glycosylase-sensitive to Ugi (uracil-DNA glycosylase inhibitor protein), (2) the addition of aphidicolin did not significantly inhibit BER DNA synthesis, and (3) the BER patch size ranged from 1 to 8 nucleotides. The misincorporation frequency of BER DNA synthesis at the target site was 5.2 x 10(-4) in U251 extracts and 5.4 x 10(-4) in LoVo extracts. The most frequent base substitution errors in the U251 and LoVo mutational spectrum were T to G > T to A >> T to C. Uracil-initiated BER DNA synthesis in extracts of E. coli BH156 (ung) BH157 (dug), and BH158 (ung, dug) was also examined. Efficient BER occurred in extracts of the BH157 strain with a misincorporation frequency of 5.6 x 10(-4). A reduced, but detectable level of BER was observed in extracts of E. coli BH156 cells; however, the mutation frequency of BER DNA synthesis was elevated 6.4-fold.


Nucleosides, Nucleotides & Nucleic Acids | 2006

Characterization of the aldehyde reactive probe reaction with AP-sites in DNA: influence of AP-lyase on adduct stability.

Samuel E. Bennett; Joshua B. Kitner

Alkoxyamines react with the open-chain aldehyde form of AP-sites in DNA to produce open-chain aldehyde oximes. Here we characterize the effect of AP-site cleavage by yeast AP-endonuclease 1 (APN1) or T4 pyrimidine dimer DNA glycosylase/AP-lyase (T4 Pdg) on the efficiency and stability of the alkoxyamine aldehyde reactive probe (ARP) condensation reaction with AP-sites. The results indicate that (1) reaction of ARP with the open-chain aldehyde equilibrium form of the AP-site was less efficient than with the 3 ′-α,β-unsaturated aldehyde produced by T4 Pdg; (2) the dRP moiety was least reactive with ARP; (3) both the AP-site and 3 ′-α,β-unsaturated aldehyde were stable with regard to reaction with ARP over a 30-min incubation period at 37°C; and (4) ARP adducted to the open-chain aldehyde form of the AP-site could be replaced by methoxyamine, but the 3 ′-α,β-unsaturated aldehyde ARP oxime was stable against methoxyamine attack.


Journal of the American Society for Mass Spectrometry | 2014

ECD of Tyrosine Phosphorylation in a Triple Quadrupole Mass Spectrometer with a Radio-Frequency-Free Electromagnetostatic Cell

Valery G. Voinov; Samuel E. Bennett; Joseph S. Beckman; Douglas F. Barofsky

AbstractA radio frequency-free electromagnetostatic (EMS) cell devised for electron-capture dissociation (ECD) of ions has been retrofitted into the collision-induced dissociation (CID) section of a triple quadrupole mass spectrometer to enable recording of ECD product-ion mass spectra and simultaneous recording of ECD-CID product-ion mass spectra. This modified instrument can be used to produce easily interpretable ECD and ECD-CID product-ion mass spectra of tyrosine-phosphorylated peptides that cover over 50% of their respective amino-acid sequences and readily identify their respective sites of phosphorylation. ECD fragmentation of doubly protonated, tyrosine-phosphorylated peptides, which was difficult to observe with FT-ICR instruments, occurs efficiently in the EMS cell. Figureᅟ

Collaboration


Dive into the Samuel E. Bennett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng-Yao Chen

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip R. Gafken

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Thomas A. Kunkel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asad Umar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jeff Morré

Oregon State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge