Samuel G. Katz
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel G. Katz.
Nature | 2008
Evripidis Gavathiotis; Motoshi Suzuki; Marguerite L. Davis; Kenneth Pitter; Gregory H. Bird; Samuel G. Katz; Ho-Chou Tu; Hyungjin Kim; Emily H. Cheng; Nico Tjandra; Loren D. Walensky
BAX is a pro-apoptotic protein of the BCL-2 family that is stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed stabilized α-helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the human BIM-SAHB–BAX interaction is highlighted by point mutagenesis that disrupts functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis.
Journal of Clinical Investigation | 2012
James L. LaBelle; Samuel G. Katz; Gregory H. Bird; Evripidis Gavathiotis; Michelle L. Stewart; Jill K. Fisher; Marina Godes; Kenneth Pitter; Andrew L. Kung; Loren D. Walensky
Cancer cells subvert the natural balance between cellular life and death, achieving immortality through pathologic enforcement of survival pathways and blockade of cell death mechanisms. Pro-apoptotic BCL-2 family proteins are frequently disarmed in relapsed and refractory cancer through genetic deletion or interaction-based neutralization by overexpressed antiapoptotic proteins, resulting in resistance to chemotherapy and radiation treatments. New pharmacologic strategies are urgently needed to overcome these formidable apoptotic blockades. We harnessed the natural killing activity of BCL-2-interacting mediator of cell death (BIM), which contains one of the most potent BH3 death domains of the BCL-2 protein family, to restore BH3-dependent cell death in resistant hematologic cancers. A hydrocarbon-stapled peptide modeled after the BIM BH3 helix broadly targeted BCL-2 family proteins with high affinity, blocked inhibitory antiapoptotic interactions, directly triggered proapoptotic activity, and induced dose-responsive and BH3 sequence-specific cell death of hematologic cancer cells. The therapeutic potential of stapled BIM BH3 was highlighted by the selective activation of cell death in the aberrant lymphoid infiltrates of mice reconstituted with BIM-deficient bone marrow and in a human AML xenograft model. Thus, we found that broad and multimodal targeting of the BCL-2 family pathway can overcome pathologic barriers to cell death.
Molecular and Cellular Biology | 2002
Alan Cantor; Samuel G. Katz; Stuart H. Orkin
ABSTRACT FOG family zinc finger proteins play essential roles in development through physical interaction with GATA factors. FOG-1, like its interacting partner GATA-1, is required for normal differentiation of erythroid and megakaryocytic cells. Here, we have developed a functional assay for FOG-1 based on its ability to rescue erythroid and megakaryocytic maturation of a genetically engineered FOG-1−/− cell line. We demonstrate that interaction through only one of FOG-1s four GATA-binding zinc fingers is sufficient for rescue, providing evidence against a model in which FOG-1 acts to bridge multiple GATA-binding DNA elements. Importantly, we find that distinct regions of FOG-1 differentially influence erythroid versus megakaryocyte maturation. As such, we propose that FOG-1 may modulate the fate of a bipotential erythroid/megakaryocytic precursor cell.
Molecular and Cellular Biology | 2002
Samuel G. Katz; Alan Cantor; Stuart H. Orkin
ABSTRACT The hematopoietic, zinc-finger protein FOG-1 is essential for the development of the erythroid and megakaryocytic lineages. FOG-1s function in hematopoiesis is dependent on its ability to interact with the transcription factor GATA-1. FOG-1 has also been observed to interact with the corepressor molecule C-terminal binding protein (CtBP) through a peptide motif shared by all FOG family members. In this study, we confirmed that FOG-1 and CtBP interact by coimmunoprecipitation. We further demonstrate that a FOG-1 mutant unable to interact with CtBP has increased erythropoietic (but not megakaryocytic) rescue (relative to the wild type) of a FOG-1−/− cell line. To analyze further the physiological role of the FOG-1-CtBP interaction, we generated knock-in mice that express a FOG-1 variant unable to bind CtBP. Surprisingly, these mice are normal and fertile. Furthermore, erythropoiesis at all stages of development is normal in these mice. Erythrocyte production is similar in mutant and wild-type mice even under conditions of erythropoietic stress stimulated by either exogenously added erythropoietin or phenylhydrazine-induced anemia. Thus, despite conservation of the FOG-CtBP interaction site, the in vivo function of FOG-1 in erythroid development is not affected by its inability to interact with the corepressor CtBP.
ACS Chemical Biology | 2014
Greg H. Bird; Evripidis Gavathiotis; James L. LaBelle; Samuel G. Katz; Loren D. Walensky
Hydrocarbon stapling is a chemical approach to restoring and fortifying the natural α-helical structure of peptides that otherwise unfold when taken out of context from the host protein. By iterating the peptide sequence, staple type, and sites of insertion, discrete compositions can be generated to suit a diversity of biochemical, structural, proteomic, cellular, and drug development applications. Here, we reinforce key design considerations to avoid pitfalls and maximize progress when applying stapled peptides in chemistry and biology research.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Marcos A. Carpio; Michael Michaud; Wenping Zhou; Jill K. Fisher; Loren D. Walensky; Samuel G. Katz
Significance The role of B-cell lymphoma-2 (BCL-2) ovarian killer (BOK) in apoptosis regulation has been a long-standing enigma. Despite the homology to BAX and BAK, BOK has yet to be linked to a definitive physiologic function in the classical apoptotic pathway. Here, we report a selective role for BOK in promoting mitochondrial apoptosis in response to endoplasmic reticulum stress. B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) is a BCL-2 family protein with high homology to the multidomain proapoptotic proteins BAX and BAK, yet Bok−/− and even Bax−/−Bok−/− and Bak−/−Bok−/− mice were reported to have no overt phenotype or apoptotic defects in response to a host of classical stress stimuli. These surprising findings were interpreted to reflect functional compensation among the BAX, BAK, and BOK proteins. However, BOK cannot compensate for the severe apoptotic defects of Bax−/−Bak−/− mice despite its widespread expression. Here, we independently developed Bok−/− mice and found that Bok−/− cells are selectively defective in their response to endoplasmic reticulum (ER) stress stimuli, consistent with the predominant subcellular localization of BOK at the ER. Whereas Bok−/− mouse embryonic fibroblasts exposed to thapsigargin, A23187, brefeldin A, DTT, geldanamycin, or bortezomib manifested reduced activation of the mitochondrial apoptotic pathway, the death response to other stimuli such as etoposide, staurosporine, or UV remained fully intact. Multiple organs in Bok−/− mice exhibited resistance to thapsigargin-induced apoptosis in vivo. Although the ER stress agents activated the unfolded protein response, both ATF4 and CHOP activation were diminished in Bok−/− cells and mice. Importantly, BAX and BAK were unable to compensate for the defective apoptotic response to ER stress observed in SV40-transformed and primary Bok−/− cells, and in vivo. These findings support a selective and distinguishing role for BOK in regulating the apoptotic response to ER stress, revealing—to our knowledge—the first bona fide apoptotic defect linked to Bok deletion.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Samuel G. Katz; Aimée M. Williams; Jifu Yang; Yuko Fujiwara; Alice P. Tsang; Jonathan A. Epstein; Stuart H. Orkin
GATA transcription factors, together with Friend of GATA (FOG) cofactors, are required for the differentiation of diverse cell types. Multiple aspects of hematopoiesis are controlled by the interaction of FOG-1 with the GATA-1/2/3 subfamily. Likewise, FOG-2 is coexpressed with the GATA-4/5/6 subfamily at other sites, including the heart and gonads. FOG-2 and GATA-4 are required for cardiac development. Through transgenic rescue of hematopoietic defects of FOG-1–/– embryos we define an unsuspected role for FOG-1 in heart development. In particular, rescued FOG-1–/– mice die at embryonic day (E) 14.5 with cardiac defects that include double outlet right ventricle and a common atrioventricular valve. Using conditional inactivation of Fog-1 we assign the cell of origin in which FOG-1 function is required. Neural crest cells migrate properly into FOG-1–/– hearts and mice with FOG-1 conditionally excised from neural crest derivatives fail to develop cardiac abnormalities. In contrast, conditional inactivation of FOG-1 in endothelial-derived tissues by means of Tie-2-expressed Cre recapitulates the rescue-knockout defects. These findings establish a nonredundant requirement for FOG-1 in the outlet tract and atrioventricular valves of the heart that depend on expression in endothelial-derived tissue and presumably reflect cooperation with the GATA-4/5/6 subfamily.
Developmental Biology | 2008
Eva Beuling; Tjalling Bosse; Daniel J. aan de Kerk; Christina M. Piaseckyj; Yuko Fujiwara; Samuel G. Katz; Stuart H. Orkin; Richard J. Grand; Stephen D. Krasinski
GATA4, a transcription factor expressed in the proximal small intestine but not in the distal ileum, maintains proximal-distal distinctions by multiple processes involving gene repression, gene activation, and cell fate determination. Friend of GATA (FOG) is an evolutionarily conserved family of cofactors whose members physically associate with GATA factors and mediate GATA-regulated repression in multiple tissues. Using a novel, inducible, intestine-specific Gata4 knock-in model in mice, in which wild-type GATA4 is specifically inactivated in the small intestine, but a GATA4 mutant that does not bind FOG cofactors (GATA4ki) continues to be expressed, we found that ileal-specific genes were significantly induced in the proximal small intestine (P<0.01); in contrast, genes restricted to proximal small intestine and cell lineage markers were unaffected, indicating that GATA4-FOG interactions contribute specifically to the repression function of GATA4 within this organ. Fog1 mRNA displayed a proximal-distal pattern that parallels that of Gata4, and FOG1 protein was co-expressed with GATA4 in intestinal epithelial cells, implicating FOG1 as the likely mediator of GATA4 function in the small intestine. Our data are the first to indicate FOG function and expression in the mammalian small intestine.
Cell Death & Differentiation | 2017
Atan Gross; Samuel G. Katz
The BCL-2 family proteins are major regulators of the apoptosis process, but the mechanisms by which they regulate this process are only partially understood. It is now well documented that these proteins play additional non-apoptotic roles that are likely to be related to their apoptotic roles and to provide important clues to cracking their mechanisms of action. It seems that these non-apoptotic roles are largely related to the activation of cellular survival pathways designated to maintain or regain cellular survival, but, if unsuccessful, will switch over into a pro-apoptotic mode. These non-apoptotic roles span a wide range of processes that include the regulation of mitochondrial physiology (metabolism, electron transport chain, morphology, permeability transition), endoplasmic reticulum physiology (calcium homeostasis, unfolded protein response (UPR)), nuclear processes (cell cycle, DNA damage response (DDR)), whole-cell metabolism (glucose and lipid), and autophagy. Here we review all these different non-apoptotic roles, make an attempt to link them to the apoptotic roles, and present many open questions for future research directions in this fascinating field.
Blood | 2014
Samuel G. Katz; James L. LaBelle; Hailong Meng; Regina P. Valeriano; Jill K. Fisher; Heather Sun; Scott J. Rodig; Steven H. Kleinstein; Loren D. Walensky
Mantle cell lymphoma (MCL) is a highly aggressive B-cell lymphoma resistant to conventional chemotherapy. Although defined by the characteristic t(11;14) translocation, MCL has not been recapitulated in transgenic mouse models of cyclin D1 overexpression alone. Indeed, several genetic aberrations have been identified in MCL that may contribute to its pathogenesis and chemoresistance. Of particular interest is the frequent biallelic deletion of the proapoptotic BCL-2 family protein BIM. BIM exerts its pro-death function via its α-helical BH3 death domain that has the dual capacity to inhibit antiapoptotic proteins such as BCL-2 and MCL-1 and directly trigger proapoptotic proteins such as the mitochondrial executioner protein BAX. To evaluate a functional role for Bim deletion in the pathogenesis of MCL, we generated cyclin D1-transgenic mice harboring Bim-deficient B cells. In response to immunization, Eμ(CycD1)CD19(CRE)Bim(fl/fl) mice manifested selective expansion of their splenic mantle zone compartment. Three distinct immune stimulation regimens induced lymphomas with histopathologic and molecular features of human MCL in a subset of mice. Thus, deletion of Bim in B cells, in the context of cyclin D1 overexpression, disrupts a critical control point in lymphoid maturation and predisposes to the development of MCL. This genetic proof of concept for MCL pathogenesis suggests an opportunity to reactivate the death pathway by pharmacologic mimicry of proapoptotic BIM.