Samuel Liebel
Federal University of Paraná
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel Liebel.
Toxicology in Vitro | 2011
Samuel Liebel; C.A. Oliveira Ribeiro; Rodrigo de Cássio da Silva; Wanessa Algarte Ramsdorf; Marta Margarete Cestari; Valéria Freitas de Magalhães; J.R.E. Garcia; B.M. Esquivel; F. Filipak Neto
Cylindrospermopsin is a potent toxicant for eukaryotic cells produced by several cyanobacteria. Recently, primary hepatocyte cultures of Neotropical fish have been established, demonstrating to be a quite efficient in vitro model for cellular toxicology studies. In the current study, a protocol for culture of Prochilodus lineatus hepatocytes was established and utilized to investigate the cellular responses to purified cylindrospermopsin exposure. Hepatocytes were successfully dissociated with dispase, resulting in a cell yield of 6.36 × 10(7)cells g(-1) of liver, viability of 97% and attachment on uncoated culture flasks. For investigation of cylindrospermopsin effects, hepatocytes were dissociated, cultured during 96 h and exposed to three concentrations of the toxin (0.1, 1.0 or 10 μgl(-1)) for 72 h. Cylindrospermopsin exposure significantly decreased cell viability (0.1 and 1 μgl(-1)) and multixenobiotic resistance mechanism, MXR (all exposed groups), but increased reactive oxygen/nitrogen species levels (all exposed groups) and lipid peroxidation (10 μgl(-1)). On the other hand no significant alterations were observed for other biochemical biomarkers as 2GSH/GSSG ratio, protein carbonyl levels and DNA strand breaks or glutathione S-transferase and glucose 6-phosphate dehydrogenase activities. In conclusion, hepatocytes might be made sensitive to cylindrospermopsin, at least in part, due to reduction of xenobiotics and endobiotics efflux capacity by MXR. Additionally, the toxin exposure suggests important issues regarding hepatocytes survival at the lowest cylindrospermopsin concentrations.
Environmental Science and Pollution Research | 2013
Flávio Henrique Tincani Osório; Luis F.O. Silva; Laercio Dante Stein Piancini; Ana Carolina Barni de Azevedo; Samuel Liebel; Flávia Yoshie Yamamoto; Vivian Philippi; Marcos L.S. Oliveira; Claudia Feijó Ortolani-Machado; Francisco Filipak Neto; Marta Margarete Cestari; Helena C. Silva de Assis; Ciro Alberto de Oliveira Ribeiro
The Tubarão River rises in Santa Catarina, Brazil, and has been historically affected by coal mining activities around its springhead. To evaluate its water conditions, an investigation regarding a possible decontamination gradient associated with the increased river flow toward the estuary, as well as the influence of seasonality over this gradient was performed through a series of biomarkers (vitellogenin, comet assay, lipid peroxidation, protein carbonylation, gluthatione, gluthatione S-transferase, acetylcholinesterase, light microscopy in liver, and scanning electron microscopy in gills) and chemical analysis (polycyclic aromatic hydrocarbons (PAHs) in bile and metal analysis in sediment) in the cichlid Geophagus brasiliensis. Two collections (summer and winter) were made in four distinct sites along the river, while sediments were sampled between those seasons. As expected, the contamination linked exclusively to mining activities was not observed, possibly due to punctual inputs of contaminants. The decontamination gradient was not observed, although seasonality seemed to have a critical role in the responses of biomarkers and availability of contaminants. In the summer, the fish presented higher histopathological damages and lower concentrations of PAHs, while in the winter they showed both higher genetic damage and accumulation of PAHs. The Tubarão suffers impacts from diverse activities, representing health risks for wild and human populations.
Ecotoxicology and Environmental Safety | 2015
Heloísa Helena Paro de Oliveira; Samuel Liebel; Stéfani Cibele Rossi; Ana Carolina Barni de Azevedo; Ellie A.L. Barrera; J.R.E. Garcia; Sonia Regina Grötzner; Francisco Filipak Neto; Marco Antonio Ferreira Randi; Ciro Alberto de Oliveira Ribeiro
The effects of benzo(a)pyrene (BaP), dichlorodiphenyltrichloroethane (DDT) and tributyltin (TBT) association were investigated through a multi-biomarker approach. Ten Rhamdia quelen fish per group were exposed through intraperitoneal injections either to BaP (0.3; 3 or 30 mg kg(-1)), DDT or TBT (0.03; 0.3 or 3 mg kg(-1)) or BaP/DDT, BaP/TBT, DDT/TBT or BaP/DDT/TBT on their lowest doses. The experiments were divided in acute (one dose, 5-day) and sub-chronic (3 doses, 15-day). Control groups received an equal volume of PBS or canola oil (1 ml kg(-1)). The three tested contaminants altered AChE activity in brain and muscle in similar ways; the mixtures antagonized the increase evoked by the contaminants alone. BaP and TBT increased GSH content and mixtures reduced it. GPx activity was increased by DDT and TBT in the 15-day experiment and reduced by the mixtures. BaP increased GST activity in sub-chronic experiment while TBT reduced it in the acute experiment. BaP/TBT increased GST activity compared to all groups; the other mixtures reduced it compared to BaP or DDT in the 5-day experiment. BaP, DDT and TBT increased δ-ALAd activity mainly in acute exposure; the mixtures also increased δ-ALAd compared to DDT or TBT in 5 and 15-day. BaP, TBT and BaP/DDT decreased LPO in the acute experiment. In the sub-chronic experiment DDT/TBT increased LPO when compared to TBT. None of the contaminants alone altered PCO, but all mixtures increased it compared to one or another contaminant. Contaminants isolated had a more acute effect in ALT plasma level; their lowest dose, which had no effect alone, in combination has led to an increase of this enzyme, especially after 15 days. DDT increased AST in the acute and sub-chronic experiments, while TBT did the same in the latter. DDT/TBT decreased AST opposing the effect of the contaminants alone in the 5-day experiment. Hepatic lesions index could be explained by a more acute effect of the contaminants alone or combined and by activation of cell defenses after the sub-chronic exposure. TBT increased melanomacrophages counting in the 5-day experiment and the mixtures increased it in the 5 and 15-day experiments. Overall, the majority of the biomarkers pointed to a more toxic effect when these contaminants were combined, leading to unexpected toxicities compared to individual exposure scenarios. These findings are relevant considering environmental exposure conditions, since organisms are often exposed to different combinations of contaminants.
Toxicology Mechanisms and Methods | 2016
Andressa Glinski; Samuel Liebel; Émilien Pelletier; Carmen Lúcia Voigt; Marco Antonio Ferreira Randi; Sandro Xavier de Campos; Ciro Alberto de Oliveira Ribeiro; Francisco Filipak Neto
Abstract Nanotechnology occupies a prominent space in economy and science due to the beneficial properties of nanomaterials. However, nanoparticles may pose risks to living organisms due to their adsorption and pro-oxidative properties. The aim of the current study was to investigate the effects of polymer-coated silver nanoparticles (AgNPs) and organochlorine pesticides (OCPs), as well as their combined effects on mouse peritoneal macrophages. Macrophages were isolated and exposed to three concentrations of AgNPs (groups: N1 = 30, N2 = 300 and N3 = 3000 ng.ml−1), two concentrations of OCPs (groups: P1 = 30 and P2 = 300 ng.ml−1) and the six possible combinations of these two contaminants for 24 h. AgNPs had irregular shape, Feret diameter of 8.7 ± 7.5 nm and zeta potential of −28.7 ± 3.9 mV in water and −10.7 ± 1.04 mV in culture medium. OCP mixtures and the lower concentrations of AgNPs had no detectable effects on cell parameters, but the highest AgNPs concentration showed high toxicity (trypan blue and MTT assays) resulting in morphological changes, increase of nitric oxide levels and phagocytic index. Foremost, the association of N3 and P2 led to distinct effects from those observed under single exposure.
Toxicology Mechanisms and Methods | 2018
Francisco Filipak Neto; Ludiana Cardoso da Silva; Samuel Liebel; Carmen Lúcia Voigt; Ciro Alberto de Oliveira Ribeiro
Abstract The nanotechnology has revolutionized the global market with silver nanoparticles (AgNP) occupying a prominent position due to their remarkable anti-bacterial properties. However, there is no data about the adverse and toxic effects of associations of AgNP and ubiquitous compounds, such as polycyclic aromatic hydrocarbons (PAH). In the current study, we investigated the responses of HepG2 cells to realistic concentrations of AgNP (0.09, 0.9, and 9 ng ml−1) and mixture of PAH (30 and 300 ng ml−1), separately and in association. Cell viability and cytotoxicity (neutral red retention and MTT production assays) and proliferation (crystal violet [CV] assay), xenobiotic efflux transporter activity (rhodamine B accumulation assay), ROS levels (dichlorodihydrofluorescein diacetate assay), and lipid peroxidation (pyrenylphosphine-1-diphenyl assay) were analyzed. There was no decreases of cell viability after exposure to AgNP, PAH and most of AgNP + PAH associations, but increases of cell viability/number (CV assay) occurred. Efflux transporter activity was not affected, with exception of one AgNP + PAH associations, ROS levels increased, but lipid peroxidation decreased. Some toxicological interactions occurred, particularly for the highest concentrations of AgNP and PAH, but there is no evidence that these interactions increased the toxicity of AgNP and PAH.
Environmental Science and Pollution Research | 2017
Ivaldete Tijolin Barros; Juliana Parolin Ceccon; Andressa Glinski; Samuel Liebel; Sonia Regina Grötzner; Marco Antonio Ferreira Randi; Evanilde Benedito; Claudia Feijó Ortolani-Machado; Francisco Filipak Neto; Ciro Alberto de Oliveira Ribeiro
In the current study, water quality of five river sites in Parana River basin (Brazil), utilized for public water supply, was assessed through a set of biomarkers in fish Astyanax spp. Population growth and inadequate use of land are challenges to the preservation of biodiversity and resources such as water. Some physicochemical parameters as well as somatic indexes, gills and liver histopathology, genotoxicity, and biochemical biomarkers were evaluated. The highest gonadosomatic index (GSI) and antioxidant parameters (catalase and glutathione S-transferase activities, non-protein thiols), as well as the lowest damage to biomolecules (lipid peroxidation, protein carbonylation, DNA damage) were observed in site 0 (Piava River), which is located at an environmental protected area. Site 1, located in the same river, but downstream site 0 and outside the protection area, presents some level of impact. Fish from site 2 (Antas River), which lack of riparian forest and suffer from silting, presented the highest micronucleus incidence and no melanomacrophages. Differently, individuals from site 3 (Xambrê River) and site 4 (Pinhalzinho River) which receive surface runoff from Umuarama city, urban and industrial sewage, have the highest incidences of liver and gill histopathological alterations, including neoplasia, which indicated the worst health conditions of all sites. In particular, site 4 had high levels of total nitrogen and ammonia, high turbidity, and very low oxygen levels, which indicate important chemical impact. Comparison of the biomarkers in fish allowed classification of the five sites in terms of environmental impact and revealed that sites 3 and 4 had particular poor water quality.
Toxicology Mechanisms and Methods | 2016
Samuel Liebel; Regina Grötzner S; Dietrich Moura Costa D; Antônio Ferreira Randi M; Alberto de Oliveira Ribeiro C; Filipak Neto F
Abstract Human hepatoma cells (HepG2) were exposed to purified cylindrospermopsin (CYN), a potent toxicant for eukaryotic cells produced by several cyanobacteria. Exposure to 10 μg l−1 of CYN for 24 h resulted in alteration of expression of 48 proteins, from which 26 were identified through mass spectrometry. Exposure to 100 μg l−1 of CYN for 24 h affected nuclear area and actin filaments intensity, which can be associated with cell proliferation and toxicity. The proteins are implicated in different biological processes: protein folding, xenobiotic efflux, antioxidant defense, energy metabolism and cell anabolism, cell signaling, tumorigenic potential, and cytoskeleton structure. Protein profile indicates that CYN exposure may lead to alteration of glucose metabolism that can be associated with the supply of useful energy to cells respond to chemical stress and proliferate. Increase of G protein-coupled receptors (GPCRs), heterogeneous nuclear ribonucleoproteins (hnRNP), and reactive oxygen species (ROS) levels observed in HepG2 cells can associate with cell proliferation and resistance. Increase of MRP3 and glutathione peroxidase can protect cells against some chemicals and ROS. CYN exposure also led to alteration of the expression of cytoskeleton proteins, which may be associated with cell proliferation and toxicity.
The Open Cardiovascular Medicine Journal | 2015
Gustavo Lenci Marques; Francisco Filipak Neto; Ciro Alberto de Oliveira Ribeiro; Samuel Liebel; Rogério de Fraga; Ronaldo da Rocha Loures Bueno
Introduction: Several theories have been proposed to explain the cause of ‘aging’; however, the factors that affect this complex process are still poorly understood. Of these theories, the accumulation of oxidative damage over time is among the most accepted. Particularly, the heart is one of the most affected organs by oxidative stress. The current study, therefore, aimed to investigate oxidative stress markers in myocardial tissue of rats at different ages. Methods: Seventy-two rats were distributed into 6 groups of 12 animals each and maintained for 3, 6, 9, 12, 18 and 24 months. After euthanasia, the heart was removed and the levels of non-protein thiols, lipid peroxidation, and protein carbonylation, as well as superoxide dismutase and catalase activities were determined. Results: Superoxide dismutase, catalase activity and lipid peroxidation were reduced in the older groups of animals, when compared with the younger group. However, protein carbonylation showed an increase in the 12-month group followed by a decrease in the older groups. In addition, the levels of non-protein thiols were increased in the 12-month group and not detected in the older groups. Conclusion: Our data showed that oxidative stress is not associated with aging in the heart. However, an increase in non-protein thiols may be an important factor that compensates for the decrease of superoxide dismutase and catalase activity in the oldest rats, to maintain appropriate antioxidant defenses against oxidative insults.
Ecotoxicology and Environmental Contamination | 2013
Samuel Liebel; Maria Eliza Miyoko Tomotake; Ciro Alberto de Oliveira Ribeiro
Toxicology in Vitro | 2015
Samuel Liebel; Ciro Alberto de Oliveira Ribeiro; Valéria Freitas de Magalhães; Rodrigo de Cássio da Silva; Stéfani Cibele Rossi; Marco Antonio Ferreira Randi; Francisco Filipak Neto