Samuel Mondy
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel Mondy.
Molecular Breeding | 2002
Marije Scholte; Isabelle d'Erfurth; Sonia Rippa; Samuel Mondy; Viviane Cosson; Patricia Durand; Colette Breda; Hanh Trinh; Ignacio D. Rodríguez-Llorente; Eva Kondorosi; Michael Schultze; Adam Kondorosi; Pascal Ratet
The annual legume Medicago truncatula has been proposed as a model plant to study various aspects of legume biology including rhizobial and mycorrhizal symbiosis because it is well suited for the genetic analysis of these processes . To facilitate the characterization of M. truncatula genes participating in various developmental processes we have initiated an insertion mutagenesis program in this plant using three different T-DNAs as tags. To investigate which type of vector is the most suitable for mutagenesis we compared the behavior of these T-DNAs. One T-DNA vector was a derivative of pBin19 and plant selection was based on kanamycin resistance. The two other vectors carried T-DNA conferring Basta resistance in the transgenic plants. For each T-DNA type, we determined the copy number in the transgenic lines, the structure of the T-DNA loci and the sequences of the integration sites. The T-DNA derived from pBin19 generated complex T-DNA insertion patterns. The two others generally gave single copy T-DNA inserts that could result in gene fusions for the pGKB5 T-DNA. Analysis of the T-DNA borders revealed that several M. truncatula genes were tagged in these transgenic lines and in vivo gus fusions were also obtained. These results demonstrate that T-DNA tagging can efficiently be used in M. truncatula for gene discovery.
The Plant Cell | 2012
Jean-Malo Couzigou; V. A. Zhukov; Samuel Mondy; Ghada Abu el Heba; Viviane Cosson; T. H. Noel Ellis; Mike Ambrose; Jiangqi Wen; Million Tadege; Igor A. Tikhonovich; Kirankumar S. Mysore; Joanna Putterill; Julie M.I. Hofer; Alexei Y. Borisov; Pascal Ratet
Medicago truncatula NOOT and Pisum sativum COCH were found to maintain nodule identity during symbiotic interactions with rhizobia and were identified as orthologs of Arabidopsis BLADE-ON-PETIOLE genes, which are involved in leaf and flower development. During their symbiotic interaction with rhizobia, legume plants develop symbiosis-specific organs on their roots, called nodules, that house nitrogen-fixing bacteria. The molecular mechanisms governing the identity and maintenance of these organs are unknown. Using Medicago truncatula nodule root (noot) mutants and pea (Pisum sativum) cochleata (coch) mutants, which are characterized by the abnormal development of roots from the nodule, we identified the NOOT and COCH genes as being necessary for the robust maintenance of nodule identity throughout the nodule developmental program. NOOT and COCH are Arabidopsis thaliana BLADE-ON-PETIOLE orthologs, and we have shown that their functions in leaf and flower development are conserved in M. truncatula and pea. The identification of these two genes defines a clade in the BTB/POZ-ankyrin domain proteins that shares conserved functions in eudicot organ development and suggests that NOOT and COCH were recruited to repress root identity in the legume symbiotic organ.
Plant Physiology | 2012
Catalina I. Pislariu; Jeremy D. Murray; Jiangqi Wen; Viviane Cosson; RajaSekhara Reddy Duvvuru Muni; Mingyi Wang; Vagner A. Benedito; Andry Andriankaja; Xiaofei Cheng; Ivone Torres Jerez; Samuel Mondy; Shulan Zhang; Mark Taylor; Million Tadege; Pascal Ratet; Kirankumar S. Mysore; Rujin Chen; Michael K. Udvardi
A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod−), 51 mutants with totally ineffective nodules (Nod+ Fix−), 17 mutants with partially ineffective nodules (Nod+ Fix+/−), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/− Fix−), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/− Fix+), and 11 supernodulating mutants (Nod++Fix+/−). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN’T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod− lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.
Applied and Environmental Microbiology | 2012
Amélie Cirou; Samuel Mondy; Shu An; Amélie Charrier; Amélie Sarrazin; Odile Thoison; Michael DuBow; Denis Faure
ABSTRACT Degradation of the quorum-sensing (QS) signals known as N-acylhomoserine lactones (AHL) by soil bacteria may be useful as a beneficial trait for protecting crops, such as potato plants, against the worldwide pathogen Pectobacterium. In this work, analytical chemistry and microbial and molecular approaches were combined to explore and compare biostimulation of native and introduced AHL-degrading Rhodococcus erythropolis populations in the rhizosphere of potato plants cultivated in farm greenhouses under hydroponic conditions. We first identified gamma-heptalactone (GHL) as a novel biostimulating agent that efficiently promotes plant root colonization by AHL-degrading R. erythropolis population. We also characterized an AHL-degrading biocontrol R. erythropolis isolate, R138, which was introduced in the potato rhizosphere. Moreover, root colonization by AHL-degrading bacteria receiving different combinations of GHL and R138 treatments was compared by using a cultivation-based approach (percentage of AHL-degrading bacteria), pyrosequencing of PCR-amplified rrs loci (total bacterial community), and quantitative PCR (qPCR) of the qsdA gene, which encodes an AHL lactonase in R. erythropolis. Higher densities of the AHL-degrading R. erythropolis population in the rhizosphere were observed when GHL treatment was associated with biocontrol strain R138. Under this condition, the introduced R. erythropolis population displaced the native R. erythropolis population. Finally, chemical analyses revealed that GHL, gamma-caprolactone (GCL), and their by-products, gamma-hydroxyheptanoic acid and gamma-hydroxycaproic acid, rapidly disappeared from the rhizosphere and did not accumulate in plant tissues. This integrative study highlights biostimulation as a potential innovative approach for improving root colonization by beneficial bacteria.
Plant Physiology | 2009
Alexandra Rakocevic; Samuel Mondy; Leila Tirichine; Viviane Cosson; Lysiane Brocard; Anelia Iantcheva; Anne Cayrel; Benjamin Devier; Ghada Ahmed Abu El-Heba; Pascal Ratet
We have identified an active Medicago truncatula copia-like retroelement called Medicago RetroElement1-1 (MERE1-1) as an insertion in the symbiotic NSP2 gene. MERE1-1 belongs to a low-copy-number family in the sequenced Medicago genome. These copies are highly related, but only three of them have a complete coding region and polymorphism exists between the long terminal repeats of these different copies. This retroelement family is present in all M. truncatula ecotypes tested but also in other legume species like Lotus japonicus. It is active only during tissue culture in both R108 and Jemalong Medicago accessions and inserts preferentially in genes.
Journal of Biological Chemistry | 2010
Sara Planamente; Armelle Vigouroux; Samuel Mondy; Magali Nicaise; Denis Faure; Solange Moréra
Bacterial periplasmic binding proteins (PBPs) and eukaryotic PBP-like domains (also called as Venus flytrap modules) of G-protein-coupled receptors are involved in extracellular GABA perception. We investigated the structural and functional basis of ligand specificity of the PBP Atu2422, which is implicated in virulence and transport of GABA in the plant pathogen Agrobacterium tumefaciens. Five high-resolution x-ray structures of Atu2422 liganded to GABA, Pro, Ala, and Val and of point mutant Atu2422-F77A liganded to Leu were determined. Structural analysis of the ligand-binding site revealed two essential residues, Phe77 and Tyr275, the implication of which in GABA signaling and virulence was confirmed using A. tumefaciens cells expressing corresponding Atu2422 mutants. Phe77 restricts ligand specificity to α-amino acids with a short lateral chain, which act as antagonists of GABA signaling in A. tumefaciens. Tyr275 specifically interacts with the GABA γ-amino group. Conservation of these two key residues in proteins phylogenetically related to Atu2422 brought to light a subfamily of PBPs in which all members could bind GABA and short α-amino acids. This work led to the identification of a fingerprint sequence and structural features for defining PBPs that bind GABA and its competitors and revealed their occurrence among host-interacting proteobacteria.
Journal of Inorganic Biochemistry | 2008
Christine Cavazza; Lydie Martin; Samuel Mondy; Jacques Gaillard; Pascal Ratet; Juan C. Fontecilla-Camps
The knockdown of a [FeFe]-hydrogenase-like gene in the model plants Medicago truncatula and Arabidopsis thaliana resulted in a mutant with a dwarf phenotype. Surprisingly, the phenotype is undistinguishable from wild type under hypoxic conditions. The heterologous expression of the plant gene in Escherichia coli indicates that the resulting protein probably coordinates two [Fe-S] clusters with different magnetic properties. Sequence alignment analysis indicates that these two clusters would be topologically equivalent to the mesial and proximal [Fe-S] centers of [FeFe]-hydrogenases. A possible role of the gene product in oxygen signaling pathways is discussed.
Molecular Microbiology | 2013
Julien Lang; Sara Planamente; Samuel Mondy; Yves Dessaux; Solange Moréra; Denis Faure
The plant pathogen Agrobacterium tumefaciens C58 harbours three independent type IV secretion (T4SS) machineries. T4SST‐DNA promotes the transfer of the T‐DNA to host plant cells, provoking tumour development and accumulation of opines such as nopaline and agrocinopines. T4SSpTi and T4SSpAt control the bacterial conjugation of the Ti and At plasmids respectively. Expression of T4SSpTi is controlled by the agrocinopine‐responsive transcriptional repressor AccR. In this work, we compared the genome‐wide transcriptional profile of the wild‐type A. tumefaciens strain C58 with that of its accR KO‐mutant to delineate the AccR regulon. In addition to the genes that encode agrocinopine catabolism and T4SSpTi, we found that AccR also regulated genes coding for nopaline catabolism and T4SSpAt. Further opine detection and conjugation assays confirmed the enhancement of nopaline consumption and At plasmid conjugation frequency in accR. Moreover, co‐regulation of the T4SSpTi and T4SSpAt correlated with the co‐transfer of the At and Ti plasmids both in vitro and in plant tumours. Finally, unlike T4SSpTi, T4SSpAt activation does not require quorum‐sensing. Overall this study highlights the regulatory interplays between opines, At and Ti plasmids that contribute to a concerted dissemination of the two replicons in bacterial populations colonizing the plant tumour.
Molecular Microbiology | 2012
Sara Planamente; Samuel Mondy; Florence Hommais; Armelle Vigouroux; Solange Moréra; Denis Faure
GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host–microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA‐binding protein, called Atu4243, in the plant pathogen Agrobacterium tumefaciens. A constructed atu4243 mutant was affected in GABA transport and in expression of the GABA‐regulated functions, including aggressiveness on two plant hosts and degradation of the quorum‐sensing signal. The GABA‐bound Atu4243 structure at 1.28 Å reveals that GABA adopts a conformation never observed so far and interacts with two key residues, Arg203 and Asp226 of which the role in GABA binding and GABA signalling in Agrobacterium has been validated using appropriate mutants. The conformational GABA‐analogue trans‐4‐aminocrotonic acid (TACA) antagonizes GABA activity, suggesting structural similarities between the binding sites of the bacterial sensor Atu4243 and mammalian GABAC receptors. Exploration of genomic databases reveals Atu4243 orthologues in several pathogenic and symbiotic proteobacteria, such as Rhizobium, Azospirillum, Burkholderia and Pseudomonas. Thus, this study establishes a structural basis for selective GABA sensors and offers opportunities for deciphering the role of the GABA‐mediated communication in several host–pathogen interactions.
Molecular Ecology | 2014
Samuel Mondy; Aurore Lenglet; Amélie Beury-Cirou; Celestin Libanga; Pascal Ratet; Denis Faure; Yves Dessaux
To investigate how exudation shapes root‐associated bacterial populations, transgenic Arabidopsis thaliana plants that exuded the xenotopic compound octopine at low and high rates were grown in a nonsterile soil. Enumerations of both cultivable and octopine‐degrading bacteria demonstrated that the ratios of octopine degraders increased along with octopine concentration. An artificial exudation system was also set up in which octopine was brought at four ratios. The density of octopine‐degrading bacteria directly correlated with the input of octopine. Bacterial diversity was analysed by rrs amplicon pyrosequencing. Ensifer and Pseudomonas were significantly more frequently detected in soil amended with artificial exudates. However, the density of Pseudomonas increased as a response to carbon supplementation while that of Ensifer only correlated with octopine concentrations possibly in relation to two opposed colonization strategies of rhizosphere bacteria, that is, copiotrophy and oligotrophy.