Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel P. Strom is active.

Publication


Featured researches published by Samuel P. Strom.


Science | 2012

Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis

Iliyan D. Iliev; Vincent Funari; Kent D. Taylor; Quoclinh Nguyen; Christopher N. Reyes; Samuel P. Strom; Jordan Brown; Courtney A. Becker; Phillip Fleshner; Marla Dubinsky; Jerome I. Rotter; Hanlin L. Wang; Dermot McGovern; Gordon D. Brown; David M. Underhill

The Mycobiome In the past few years, much attention has been given to the trillions of bacterial inhabitants in our guts and the myriad of ways in which they influence our overall health. But what about fungi? Iliev et al. (p. 1314) now report that mice and humans, along with several other mammals, contain a resident intestinal population of fungi. Deletion of Dectin-1, which acts as a major innate immune sensor for fungi, led to enhanced susceptibility and worse pathology in a chemically induced model of colitis in mice. A polymorphism in the gene that encodes Dectin-1 has been observed in patients with ulcerative colitis, which hints that, besides the traditional bacterial microbiome, alterations in the “mycobiome” may also play a role in health and disease. Mammals contain resident fungal intestinal populations that influence disease susceptibility. The intestinal microflora, typically equated with bacteria, influences diseases such as obesity and inflammatory bowel disease. Here, we show that the mammalian gut contains a rich fungal community that interacts with the immune system through the innate immune receptor Dectin-1. Mice lacking Dectin-1 exhibited increased susceptibility to chemically induced colitis, which was the result of altered responses to indigenous fungi. In humans, we identified a polymorphism in the gene for Dectin-1 (CLEC7A) that is strongly linked to a severe form of ulcerative colitis. Together, our findings reveal a eukaryotic fungal community in the gut (the “mycobiome”) that coexists with bacteria and substantially expands the repertoire of organisms interacting with the intestinal immune system to influence health and disease.


JAMA | 2014

Clinical Exome Sequencing for Genetic Identification of Rare Mendelian Disorders

Hane Lee; Joshua L. Deignan; Naghmeh Dorrani; Samuel P. Strom; Sibel Kantarci; Fabiola Quintero-Rivera; Kingshuk Das; Traci Toy; Bret Harry; Michael Yourshaw; Michelle Fox; Brent L. Fogel; Julian A. Martinez-Agosto; Derek Wong; Vivian Y. Chang; Perry B. Shieh; Christina G.S. Palmer; Katrina M. Dipple; Wayne W. Grody; Eric Vilain; Stanley F. Nelson

IMPORTANCE Clinical exome sequencing (CES) is rapidly becoming a common molecular diagnostic test for individuals with rare genetic disorders. OBJECTIVE To report on initial clinical indications for CES referrals and molecular diagnostic rates for different indications and for different test types. DESIGN, SETTING, AND PARTICIPANTS Clinical exome sequencing was performed on 814 consecutive patients with undiagnosed, suspected genetic conditions at the University of California, Los Angeles, Clinical Genomics Center between January 2012 and August 2014. Clinical exome sequencing was conducted as trio-CES (both parents and their affected child sequenced simultaneously) to effectively detect de novo and compound heterozygous variants or as proband-CES (only the affected individual sequenced) when parental samples were not available. MAIN OUTCOMES AND MEASURES Clinical indications for CES requests, molecular diagnostic rates of CES overall and for phenotypic subgroups, and differences in molecular diagnostic rates between trio-CES and proband-CES. RESULTS Of the 814 cases, the overall molecular diagnosis rate was 26% (213 of 814; 95% CI, 23%-29%). The molecular diagnosis rate for trio-CES was 31% (127 of 410 cases; 95% CI, 27%-36%) and 22% (74 of 338 cases; 95% CI, 18%-27%) for proband-CES. In cases of developmental delay in children (<5 years, n = 138), the molecular diagnosis rate was 41% (45 of 109; 95% CI, 32%-51%) for trio-CES cases and 9% (2 of 23, 95% CI, 1%-28%) for proband-CES cases. The significantly higher diagnostic yield (P value = .002; odds ratio, 7.4 [95% CI, 1.6-33.1]) of trio-CES was due to the identification of de novo and compound heterozygous variants. CONCLUSIONS AND RELEVANCE In this sample of patients with undiagnosed, suspected genetic conditions, trio-CES was associated with higher molecular diagnostic yield than proband-CES or traditional molecular diagnostic methods. Additional studies designed to validate these findings and to explore the effect of this approach on clinical and economic outcomes are warranted.


JAMA Neurology | 2014

Exome Sequencing in the Clinical Diagnosis of Sporadic or Familial Cerebellar Ataxia

Brent L. Fogel; Hane Lee; Joshua L. Deignan; Samuel P. Strom; Sibel Kantarci; Xizhe Wang; Fabiola Quintero-Rivera; Eric Vilain; Wayne W. Grody; Susan Perlman; Daniel H. Geschwind; Stanley F. Nelson

IMPORTANCE Cerebellar ataxias are a diverse collection of neurologic disorders with causes ranging from common acquired etiologies to rare genetic conditions. Numerous genetic disorders have been associated with chronic progressive ataxia and this consequently presents a diagnostic challenge for the clinician regarding how to approach and prioritize genetic testing in patients with such clinically heterogeneous phenotypes. Additionally, while the value of genetic testing in early-onset and/or familial cases seems clear, many patients with ataxia present sporadically with adult onset of symptoms and the contribution of genetic variation to the phenotype of these patients has not yet been established. OBJECTIVE To investigate the contribution of genetic disease in a population of patients with predominantly adult- and sporadic-onset cerebellar ataxia. DESIGN, SETTING, AND PARTICIPANTS We examined a consecutive series of 76 patients presenting to a tertiary referral center for evaluation of chronic progressive cerebellar ataxia. MAIN OUTCOMES AND MEASURES Next-generation exome sequencing coupled with comprehensive bioinformatic analysis, phenotypic analysis, and clinical correlation. RESULTS We identified clinically relevant genetic information in more than 60% of patients studied (n = 46), including diagnostic pathogenic gene variants in 21% (n = 16), a notable yield given the diverse genetics and clinical heterogeneity of the cerebellar ataxias. CONCLUSIONS AND RELEVANCE This study demonstrated that clinical exome sequencing in patients with adult-onset and sporadic presentations of ataxia is a high-yield test, providing a definitive diagnosis in more than one-fifth of patients and suggesting a potential diagnosis in more than one-third to guide additional phenotyping and diagnostic evaluation. Therefore, clinical exome sequencing is an appropriate consideration in the routine genetic evaluation of all patients presenting with chronic progressive cerebellar ataxia.


Genetics in Medicine | 2014

Assessing the necessity of confirmatory testing for exome-sequencing results in a clinical molecular diagnostic laboratory.

Samuel P. Strom; Hane Lee; Kingshuk Das; Eric Vilain; Stanley F. Nelson; Wayne W. Grody; Joshua L. Deignan

Purpose:Sanger sequencing is currently considered the gold standard methodology for clinical molecular diagnostic testing. However, next-generation sequencing has already emerged as a much more efficient means to identify genetic variants within gene panels, the exome, or the genome. We sought to assess the accuracy of next-generation sequencing variant identification in our clinical genomics laboratory with the goal of establishing a quality score threshold for confirmatory Sanger-based testing.Methods:Confirmation data for reported results from 144 sequential clinical exome-sequencing cases (94 unique variants) and an additional set of 16 variants from comparable research samples were analyzed.Results:Of the 110 total single-nucleotide variants analyzed, 103 variants had a quality score ≥Q500, 103 (100%) of which were confirmed by Sanger sequencing. Of the remaining seven variants with quality scores <Q500, six were confirmed by Sanger sequencing (85%).Conclusion:For single-nucleotide variants, we predict that going forward, we will be able to reduce our Sanger confirmation workload by 70–80%. This serves as a proof of principle that as long as sufficient validation and quality control measures are implemented, the volume of Sanger confirmation can be reduced, alleviating a significant amount of the labor and cost burden on clinical laboratories wishing to use next-generation sequencing technology. However, Sanger confirmation of low-quality single-nucleotide variants and all insertions or deletions <10 bp remains necessary at this time in our laboratory.Genet Med 16 7, 510–515.


Human Molecular Genetics | 2014

Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance

Frank J. Kaiser; Morad Ansari; Diana Braunholz; María Concepción Gil-Rodríguez; Christophe Decroos; Jonathan Wilde; Christopher T. Fincher; Maninder Kaur; Masashige Bando; David J. Amor; Paldeep Singh Atwal; Melanie Bahlo; Christine M. Bowman; Jacquelyn J. Bradley; Han G. Brunner; Dinah Clark; Miguel del Campo; Nataliya Di Donato; Peter Diakumis; Holly Dubbs; David A. Dyment; Juliane Eckhold; Sarah Ernst; Jose Carlos Ferreira; Lauren J. Francey; Ulrike Gehlken; Encarna Guillén-Navarro; Yolanda Gyftodimou; Bryan D. Hall; Raoul C. M. Hennekam

Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder with distinct facies, growth failure, intellectual disability, distal limb anomalies, gastrointestinal and neurological disease. Mutations in NIPBL, encoding a cohesin regulatory protein, account for >80% of cases with typical facies. Mutations in the core cohesin complex proteins, encoded by the SMC1A, SMC3 and RAD21 genes, together account for ∼5% of subjects, often with atypical CdLS features. Recently, we identified mutations in the X-linked gene HDAC8 as the cause of a small number of CdLS cases. Here, we report a cohort of 38 individuals with an emerging spectrum of features caused by HDAC8 mutations. For several individuals, the diagnosis of CdLS was not considered prior to genomic testing. Most mutations identified are missense and de novo. Many cases are heterozygous females, each with marked skewing of X-inactivation in peripheral blood DNA. We also identified eight hemizygous males who are more severely affected. The craniofacial appearance caused by HDAC8 mutations overlaps that of typical CdLS but often displays delayed anterior fontanelle closure, ocular hypertelorism, hooding of the eyelids, a broader nose and dental anomalies, which may be useful discriminating features. HDAC8 encodes the lysine deacetylase for the cohesin subunit SMC3 and analysis of the functional consequences of the missense mutations indicates that all cause a loss of enzymatic function. These data demonstrate that loss-of-function mutations in HDAC8 cause a range of overlapping human developmental phenotypes, including a phenotypically distinct subgroup of CdLS.


American Journal of Human Genetics | 2015

De Novo Nonsense Mutations in KAT6A, a Lysine Acetyl-Transferase Gene, Cause a Syndrome Including Microcephaly and Global Developmental Delay

Valerie A. Arboleda; Hane Lee; Naghmeh Dorrani; Neda Zadeh; Mary Willis; Colleen Forsyth Macmurdo; Melanie A. Manning; Andrea Kwan; Louanne Hudgins; Florian Barthelemy; M. Carrie Miceli; Fabiola Quintero-Rivera; Sibel Kantarci; Samuel P. Strom; Joshua L. Deignan; Wayne W. Grody; Eric Vilain; Stanley F. Nelson

Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in histone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129∗]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024∗]). Neither of these variants was present in 1,815 in-house exomes or in public databases. Common features among all four probands include primary microcephaly, global developmental delay including profound speech delay, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. We further demonstrate that KAT6A mutations result in dysregulation of H3K9 and H3K18 acetylation and altered P53 signaling. Through histone and non-histone acetylation, KAT6A affects multiple cellular processes and illustrates the complex role of acetylation in regulating development and disease.


Human Molecular Genetics | 2014

Analysis of the ABCA4 genomic locus in Stargardt disease

Jana Zernant; Yajing Angela Xie; C. Ayuso; Rosa Riveiro-Alvarez; Miguel-Angel Lopez-Martinez; Francesca Simonelli; Francesco Testa; Michael B. Gorin; Samuel P. Strom; Mette Bertelsen; Thomas Rosenberg; Philip M. Boone; Bo Yuan; Radha Ayyagari; Peter L. Nagy; Stephen H. Tsang; Peter Gouras; Frederick T. Collison; James R. Lupski; Gerald A. Fishman; Rando Allikmets

Autosomal recessive Stargardt disease (STGD1, MIM 248200) is caused by mutations in the ABCA4 gene. Complete sequencing of ABCA4 in STGD patients identifies compound heterozygous or homozygous disease-associated alleles in 65-70% of patients and only one mutation in 15-20% of patients. This study was designed to find the missing disease-causing ABCA4 variation by a combination of next-generation sequencing (NGS), array-Comparative Genome Hybridization (aCGH) screening, familial segregation and in silico analyses. The entire 140 kb ABCA4 genomic locus was sequenced in 114 STGD patients with one known ABCA4 exonic mutation revealing, on average, 200 intronic variants per sample. Filtering of these data resulted in 141 candidates for new mutations. Two variants were detected in four samples, two in three samples, and 20 variants in two samples, the remaining 117 new variants were detected only once. Multimodal analysis suggested 12 new likely pathogenic intronic ABCA4 variants, some of which were specific to (isolated) ethnic groups. No copy number variation (large deletions and insertions) was detected in any patient suggesting that it is a very rare event in the ABCA4 locus. Many variants were excluded since they were not conserved in non-human primates, were frequent in African populations and, therefore, represented ancestral, and not disease-associated, variants. The sequence variability in the ABCA4 locus is extensive and the non-coding sequences do not harbor frequent mutations in STGD patients of European-American descent. Defining disease-associated alleles in the ABCA4 locus requires exceptionally well characterized large cohorts and extensive analyses by a combination of various approaches.


PLOS ONE | 2009

Disease Gene Characterization through Large-Scale Co-Expression Analysis

Allen Day; Jun Dong; Vincent Funari; Bret Harry; Samuel P. Strom; Daniel H. Cohn; Stanley F. Nelson

Background In the post genome era, a major goal of biology is the identification of specific roles for individual genes. We report a new genomic tool for gene characterization, the UCLA Gene Expression Tool (UGET). Results Celsius, the largest co-normalized microarray dataset of Affymetrix based gene expression, was used to calculate the correlation between all possible gene pairs on all platforms, and generate stored indexes in a web searchable format. The size of Celsius makes UGET a powerful gene characterization tool. Using a small seed list of known cartilage-selective genes, UGET extended the list of known genes by identifying 32 new highly cartilage-selective genes. Of these, 7 of 10 tested were validated by qPCR including the novel cartilage-specific genes SDK2 and FLJ41170. In addition, we retrospectively tested UGET and other gene expression based prioritization tools to identify disease-causing genes within known linkage intervals. We first demonstrated this utility with UGET using genetically heterogeneous disorders such as Joubert syndrome, microcephaly, neuropsychiatric disorders and type 2 limb girdle muscular dystrophy (LGMD2) and then compared UGET to other gene expression based prioritization programs which use small but discrete and well annotated datasets. Finally, we observed a significantly higher gene correlation shared between genes in disease networks associated with similar complex or Mendelian disorders. Discussion UGET is an invaluable resource for a geneticist that permits the rapid inclusion of expression criteria from one to hundreds of genes in genomic intervals linked to disease. By using thousands of arrays UGET annotates and prioritizes genes better than other tools especially with rare tissue disorders or complex multi-tissue biological processes. This information can be critical in prioritization of candidate genes for sequence analysis.


BMC Medical Genetics | 2014

De Novo variants in the KMT2A (MLL) gene causing atypical Wiedemann-Steiner syndrome in two unrelated individuals identified by clinical exome sequencing

Samuel P. Strom; Reymundo Lozano; Hane Lee; Naghmeh Dorrani; John Mann; Patricia F O’Lague; Nicole Mans; Joshua L. Deignan; Eric Vilain; Stanley F. Nelson; Wayne W. Grody; Fabiola Quintero-Rivera

BackgroundWiedemann-Steiner Syndrome (WSS) is characterized by short stature, a variety of dysmorphic facial and skeletal features, characteristic hypertrichosis cubiti (excessive hair on the elbows), mild-to-moderate developmental delay and intellectual disability. [MIM#: 605130]. Here we report two unrelated children for whom clinical exome sequencing of parent-proband trios was performed at UCLA, resulting in a molecular diagnosis of WSS and atypical clinical presentation.Case presentationFor patient 1, clinical features at 9 years of age included developmental delay, craniofacial abnormalities, and multiple minor anomalies. Patient 2 presented at 1 year of age with developmental delay, microphthalmia, partial 3–4 left hand syndactyly, and craniofacial abnormalities. A de novo missense c.4342T>C variant and a de novo splice site c.4086+G>A variant were identified in the KMT2A gene in patients 1 and 2, respectively.ConclusionsBased on the clinical and molecular findings, both patients appear to have novel presentations of WSS. As the hallmark hypertrichosis cubiti was not initially appreciated in either case, this syndrome was not suspected during the clinical evaluation. This report expands the phenotypic spectrum of the clinical phenotypes and KMT2A variants associated with WSS.


BMC Medical Genetics | 2012

Molecular diagnosis of putative Stargardt disease probands by exome sequencing

Samuel P. Strom; Yong-Qing Gao; Ariadna Martinez; Carolina Ortube; Zugen Chen; Stanley F. Nelson; Steven Nusinowitz; Deborah B Farber; Michael B. Gorin

BackgroundThe commonest genetic form of juvenile or early adult onset macular degeneration is Stargardt Disease (STGD) caused by recessive mutations in the gene ABCA4. However, high phenotypic and allelic heterogeneity and a small but non-trivial amount of locus heterogeneity currently impede conclusive molecular diagnosis in a significant proportion of cases.MethodsWe performed whole exome sequencing (WES) of nine putative Stargardt Disease probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Follow-up dideoxy sequencing was performed for confirmation and to screen for mutations in an additional set of affected individuals lacking a definitive molecular diagnosis.ResultsWhole exome sequencing revealed seven likely disease-causing variants across four genes, providing a confident genetic diagnosis in six previously uncharacterized participants. We identified four previously missed mutations in ABCA4 across three individuals. Likely disease-causing mutations in RDS/PRPH2, ELOVL, and CRB1 were also identified.ConclusionsOur findings highlight the enormous potential of whole exome sequencing in Stargardt Disease molecular diagnosis and research. WES adequately assayed all coding sequences and canonical splice sites of ABCA4 in this study. Additionally, WES enables the identification of disease-related alleles in other genes. This work highlights the importance of collecting parental genetic material for WES testing as the current knowledge of human genome variation limits the determination of causality between identified variants and disease. While larger sample sizes are required to establish the precision and accuracy of this type of testing, this study supports WES for inherited early onset macular degeneration disorders as an alternative to standard mutation screening techniques.

Collaboration


Dive into the Samuel P. Strom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hane Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne W. Grody

University of California

View shared research outputs
Top Co-Authors

Avatar

Eric Vilain

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sibel Kantarci

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge