Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel S. Freeman is active.

Publication


Featured researches published by Samuel S. Freeman.


Nature | 2014

Landscape of genomic alterations in cervical carcinomas

Akinyemi I. Ojesina; Lee Lichtenstein; Samuel S. Freeman; Chandra Sekhar Pedamallu; Ivan Imaz-Rosshandler; Trevor J. Pugh; Andrew D. Cherniack; Lauren Ambrogio; Kristian Cibulskis; Bjørn Enge Bertelsen; Sandra Romero-Cordoba; Victor Trevino; Karla Vazquez-Santillan; Alberto Salido Guadarrama; Alexi A. Wright; Mara Rosenberg; Fujiko Duke; Bethany Kaplan; Rui Wang; Elizabeth Nickerson; Heather M. Walline; Michael S. Lawrence; Chip Stewart; Scott L. Carter; Aaron McKenna; Iram P. Rodriguez-Sanchez; Magali Espinosa-Castilla; Kathrine Woie; Line Bjørge; Elisabeth Wik

Cervical cancer is responsible for 10–15% of cancer-related deaths in women worldwide. The aetiological role of infection with high-risk human papilloma viruses (HPVs) in cervical carcinomas is well established. Previous studies have also implicated somatic mutations in PIK3CA, PTEN, TP53, STK11 and KRAS as well as several copy-number alterations in the pathogenesis of cervical carcinomas. Here we report whole-exome sequencing analysis of 115 cervical carcinoma–normal paired samples, transcriptome sequencing of 79 cases and whole-genome sequencing of 14 tumour–normal pairs. Previously unknown somatic mutations in 79 primary squamous cell carcinomas include recurrent E322K substitutions in the MAPK1 gene (8%), inactivating mutations in the HLA-B gene (9%), and mutations in EP300 (16%), FBXW7 (15%), NFE2L2 (4%), TP53 (5%) and ERBB2 (6%). We also observe somatic ELF3 (13%) and CBFB (8%) mutations in 24 adenocarcinomas. Squamous cell carcinomas have higher frequencies of somatic nucleotide substitutions occurring at cytosines preceded by thymines (Tp*C sites) than adenocarcinomas. Gene expression levels at HPV integration sites were statistically significantly higher in tumours with HPV integration compared with expression of the same genes in tumours without viral integration at the same site. These data demonstrate several recurrent genomic alterations in cervical carcinomas that suggest new strategies to combat this disease.


Nature Genetics | 2013

Somatic mutation of CDKN1B in small intestine neuroendocrine tumors

Joshua M. Francis; Adam Kiezun; Alex H. Ramos; Stefano Serra; Chandra Sekhar Pedamallu; Zhi Rong Qian; Michaela S. Banck; Rahul Kanwar; Amit A. Kulkarni; Anna Karpathakis; Veronica E. Manzo; Tanupriya Contractor; Juliet Philips; Elizabeth Nickerson; Nam H. Pho; Susanne M. Hooshmand; Lauren K. Brais; Michael S. Lawrence; Trevor J. Pugh; Aaron McKenna; Andrey Sivachenko; Kristian Cibulskis; Scott L. Carter; Akinyemi I. Ojesina; Samuel S. Freeman; Robert T. Jones; Douglas Voet; Gordon Saksena; Daniel Auclair; Robert C. Onofrio

The diagnosed incidence of small intestine neuroendocrine tumors (SI-NETs) is increasing, and the underlying genomic mechanisms have not yet been defined. Using exome- and genome-sequence analysis of SI-NETs, we identified recurrent somatic mutations and deletions in CDKN1B, the cyclin-dependent kinase inhibitor gene, which encodes p27. We observed frameshift mutations of CDKN1B in 14 of 180 SI-NETs, and we detected hemizygous deletions encompassing CDKN1B in 7 out of 50 SI-NETs, nominating p27 as a tumor suppressor and implicating cell cycle dysregulation in the etiology of SI-NETs.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Characterization of HPV and host genome interactions in primary head and neck cancers

Michael Parfenov; Chandra Sekhar Pedamallu; Nils Gehlenborg; Samuel S. Freeman; Ludmila Danilova; Christopher A. Bristow; Semin Lee; Angela Hadjipanayis; Elena Ivanova; Matthew D. Wilkerson; Alexei Protopopov; Lixing Yang; Sahil Seth; Xingzhi Song; Jiabin Tang; Xiaojia Ren; Jianhua Zhang; Angeliki Pantazi; Netty Santoso; Andrew W. Xu; Harshad S. Mahadeshwar; David A. Wheeler; Robert I. Haddad; Joonil Jung; Akinyemi I. Ojesina; Natalia Issaeva; Wendell G. Yarbrough; D. Neil Hayes; Jennifer R. Grandism; Adel K. El-Naggar

Significance A significant proportion of head and neck cancer is driven by human papillomavirus (HPV) infection, and the expression of viral oncogenes is involved in the development of these tumors. However, the role of HPV integration in primary tumors beyond increasing the expression of viral oncoproteins is not understood. Here, we describe how HPV integration impacts the host genome by amplification of oncogenes and disruption of tumor suppressors as well as driving inter- and intrachromosomal rearrangements. Tumors that do and do not have HPV integrants display distinct gene expression profiles and DNA methylation patterns, which further support the view that the mechanisms by which tumors with integrated and nonintegrated HPV arise are distinct. Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twenty-five cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter- and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.


Cancer Cell | 2016

Transcriptomic Characterization of SF3B1 Mutation Reveals Its Pleiotropic Effects in Chronic Lymphocytic Leukemia

Lili Wang; Angela N. Brooks; Jean Fan; Youzhong Wan; Rutendo Gambe; Shuqiang Li; Sarah Hergert; Shanye Yin; Samuel S. Freeman; Joshua Z. Levin; Lin Fan; Michael Seiler; Silvia Buonamici; Peter G. Smith; Kevin F. Chau; Carrie Cibulskis; Wandi Zhang; Laura Z. Rassenti; Emanuela M. Ghia; Thomas J. Kipps; Stacey M. Fernandes; Donald B. Bloch; Dylan Kotliar; Dan A. Landau; Sachet A. Shukla; Robin Reed; David S. DeLuca; Jennifer R. Brown; Donna Neuberg; Gad Getz

Mutations in SF3B1, which encodes a spliceosome component, are associated with poor outcome in chronic lymphocytic leukemia (CLL), but how these contribute to CLL progression remains poorly understood. We undertook a transcriptomic characterization of primary human CLL cells to identify transcripts and pathways affected by SF3B1 mutation. Splicing alterations, identified in the analysis of bulk cells, were confirmed in single SF3B1-mutated CLL cells and also found in cell lines ectopically expressing mutant SF3B1. SF3B1 mutation was found to dysregulate multiple cellular functions including DNA damage response, telomere maintenance, and Notch signaling (mediated through KLF8 upregulation, increased TERC and TERT expression, or altered splicing of DVL2 transcript, respectively). SF3B1 mutation leads to diverse changes in CLL-related pathways.


Nature Communications | 2017

Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors

Viktor A. Adalsteinsson; Gavin Ha; Samuel S. Freeman; Atish D. Choudhury; Daniel G. Stover; Heather A. Parsons; Gregory Gydush; Sarah C. Reed; Denisse Rotem; Justin Rhoades; Denis Loginov; Dimitri Livitz; Daniel Rosebrock; Ignaty Leshchiner; Jaegil Kim; Chip Stewart; Mara Rosenberg; Joshua M. Francis; Cheng-Zhong Zhang; Ofir Cohen; Coyin Oh; Huiming Ding; Paz Polak; Max Lloyd; Sairah Mahmud; Karla Helvie; Margaret S. Merrill; Rebecca A. Santiago; Edward P. O’Connor; Seong Ho Jeong

Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.Identifying the mutational landscape of tumours from cell-free DNA in the blood could help diagnostics in cancer. Here, the authors present ichorCNA, software that quantifies tumour content in cell free DNA, and they demonstrate that cell-free DNA whole-exome sequencing is concordant with metastatic tumour whole-exome sequencing.


Cancer Discovery | 2018

Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma

Eirini Pectasides; Matthew D. Stachler; Sarah Derks; Yang Liu; Steven Brad Maron; Mirazul Islam; Lindsay Alpert; Heewon A. Kwak; Hedy L. Kindler; Blase N. Polite; Manish R. Sharma; Kenisha Allen; Emily O'Day; S Lomnicki; Melissa Maranto; Rajani Kanteti; Carrie Fitzpatrick; Christopher R. Weber; Namrata Setia; Shu-Yuan Xiao; John Hart; Rebecca J. Nagy; Kyoung-Mee Kim; Min-Gew Choi; Byung-Hoon Min; Katie S. Nason; Lea O'Keefe; Masayuki Watanabe; Hideo Baba; Rick Lanman

Gastroesophageal adenocarcinoma (GEA) is a lethal disease where targeted therapies, even when guided by genomic biomarkers, have had limited efficacy. A potential reason for the failure of such therapies is that genomic profiling results could commonly differ between the primary and metastatic tumors. To evaluate genomic heterogeneity, we sequenced paired primary GEA and synchronous metastatic lesions across multiple cohorts, finding extensive differences in genomic alterations, including discrepancies in potentially clinically relevant alterations. Multiregion sequencing showed significant discrepancy within the primary tumor (PT) and between the PT and disseminated disease, with oncogene amplification profiles commonly discordant. In addition, a pilot analysis of cell-free DNA (cfDNA) sequencing demonstrated the feasibility of detecting genomic amplifications not detected in PT sampling. Lastly, we profiled paired primary tumors, metastatic tumors, and cfDNA from patients enrolled in the personalized antibodies for GEA (PANGEA) trial of targeted therapies in GEA and found that genomic biomarkers were recurrently discrepant between the PT and untreated metastases. Divergent primary and metastatic tissue profiling led to treatment reassignment in 32% (9/28) of patients. In discordant primary and metastatic lesions, we found 87.5% concordance for targetable alterations in metastatic tissue and cfDNA, suggesting the potential for cfDNA profiling to enhance selection of therapy.Significance: We demonstrate frequent baseline heterogeneity in targetable genomic alterations in GEA, indicating that current tissue sampling practices for biomarker testing do not effectively guide precision medicine in this disease and that routine profiling of metastatic lesions and/or cfDNA should be systematically evaluated. Cancer Discov; 8(1); 37-48. ©2017 AACR.See related commentary by Sundar and Tan, p. 14See related article by Janjigian et al., p. 49This article is highlighted in the In This Issue feature, p. 1.


International Journal of Cancer | 2015

Genomic aberrations in cervical adenocarcinomas in Hong Kong Chinese women.

Tony K.H. Chung; Paul Van Hummelen; Paul K.S. Chan; Tak-Hong Cheung; So Fan Yim; Mei Y. Yu; Matthew Ducar; Aaron R. Thorner; Laura E. MacConaill; Graeme Doran; Chandra Sekhar Pedamallu; Akinyemi I. Ojesina; Raymond R.Y. Wong; Vivian W. Wang; Samuel S. Freeman; Tat San Lau; Joseph Kwong; Loucia K.Y. Chan; Menachem Fromer; Taymaa May; Michael J. Worley; Katharine M. Esselen; Kevin M. Elias; Michael S. Lawrence; Gad Getz; David I. Smith; Christopher P. Crum; Matthew Meyerson; Ross S. Berkowitz; Yick Fu Wong

Although the rates of cervical squamous cell carcinoma have been declining, the rates of cervical adenocarcinoma are increasing in some countries. Outcomes for advanced cervical adenocarcinoma remain poor. Precision mapping of genetic alterations in cervical adenocarcinoma may enable better selection of therapies and deliver improved outcomes when combined with new sequencing diagnostics. We present whole‐exome sequencing results from 15 cervical adenocarcinomas and paired normal samples from Hong Kong Chinese women. These data revealed a heterogeneous mutation spectrum and identified several frequently altered genes including FAT1, ARID1A, ERBB2 and PIK3CA. Exome sequencing identified human papillomavirus (HPV) sequences in 13 tumors in which the HPV genome might have integrated into and hence disrupted the functions of certain exons, raising the possibility that HPV integration can alter pathways other than p53 and pRb. Together, these provisionary data suggest the potential for individualized therapies for cervical adenocarcinoma based on genomic information.


Cell | 2018

Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing

Srinivas R. Viswanathan; Gavin Ha; Andreas M. Hoff; Jeremiah Wala; Jian Carrot-Zhang; Christopher W. Whelan; Nicholas J. Haradhvala; Samuel S. Freeman; Sarah C. Reed; Justin Rhoades; Paz Polak; Michelle Cipicchio; Stephanie A. Wankowicz; Alicia Wong; Tushar Kamath; Zhenwei Zhang; Gregory Gydush; Denisse Rotem; J. Christopher Love; Gad Getz; Stacey Gabriel; Cheng-Zhong Zhang; Scott M. Dehm; Peter S. Nelson; Eliezer M. Van Allen; Atish D. Choudhury; Viktor A. Adalsteinsson; Rameen Beroukhim; Mary-Ellen Taplin; Matthew Meyerson

Nearly all prostate cancer deaths are from metastatic castration-resistant prostate cancer (mCRPC), but there have been few whole-genome sequencing (WGS) studies of this disease state. We performed linked-read WGS on 23 mCRPC biopsy specimens and analyzed cell-free DNA sequencing data from 86 patients with mCRPC. In addition to frequent rearrangements affecting known prostate cancer genes, we observed complex rearrangements of the AR locus in most cases. Unexpectedly, these rearrangements include highly recurrent tandem duplications involving an upstream enhancer of AR in 70%-87% of cases compared with <2% of primary prostate cancers. A subset of cases displayed AR or MYC enhancer duplication in the context of a genome-wide tandem duplicator phenotype associated with CDK12 inactivation. Our findings highlight the complex genomic structure of mCRPC, nominate alterations that may inform prostate cancer treatment, and suggest that additional recurrent events in the non-coding mCRPC genome remain to be discovered.


Arthritis & Rheumatism | 2014

A121: In Search of Infectious Triggers of Periodic Fever, Aphthous Stomatitis, Pharyngitis and Adenitis Syndrome

Samuel S. Freeman; Ami S. Bhatt; Chandra Sekhar Pedamallu; Sandra L. King; Fujiko Duke; Joonil Jung; Maranda Lawton; Edwin Anderson; Robert C. Fuhlbrigge; Margaret A. Kenna; Greg R. Licameli; Matthew Meyerson; Fatma Dedeoglu

Periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA) syndrome is the most prevalent pediatric autoinflammatory fever disorder. As there is no known genetic cause or confirmatory test, diagnosis of PFAPA is challenging. Clockwork interval between episodes is a characteristic feature, which aids in diagnosis. The true prevalence and the etiology of PFAPA are not known, but genetic factors leading to immune dysregulation as well as infectious agents have been suggested as causative factors. Oral corticosteroids abort the episodes in majority of patients, and in recent years, tonsillectomy has been shown to be effective in inducing remission. Our center has a significant success rate with tonsillectomy in PFAPA patients. Using unbiased next‐generation sequencing, we investigated the presence of potential infectious agents and gene expression signatures in tonsils from patients with PFAPA, chronic tonsillitis and obstructive sleep apnea (OSA).


Cellular and molecular gastroenterology and hepatology | 2016

Metagenomic Characterization of Microbial Communities In Situ Within the Deeper Layers of the Ileum in Crohn’s Disease

Chandra Sekhar Pedamallu; Ami S. Bhatt; Susan Bullman; Sharyle Fowler; Samuel S. Freeman; Jacqueline Durand; Joonil Jung; Fujiko Duke; Veronica Manzo; Diana Cai; Ashwin N. Ananthakrishnan; Akinyemi I. Ojesina; Dirk Gevers; Ramnik J. Xavier; Atul K. Bhan; Matthew Meyerson; Vijay Yajnik

Background & Aims Microbial dysbiosis and aberrant host–microbe interactions in the gut are believed to contribute to the development and progression of Crohn’s disease (CD). Microbiome studies in CD typically have focused on microbiota in feces or superficial mucosal layers of the colon because accessing DNA from deeper layers of the bowel is challenging. In this study, we analyzed the deep tissue microbiome in patients who underwent surgical resection of the small intestine. Methods Paraffin blocks were obtained from 12 CD patients undergoing ileocecal resection, and healthy ileum samples (inflammatory bowel disease–free controls) were obtained from 12 patients undergoing surgery for right-sided colon cancer. Diseased and healthy-appearing ileum was identified using microscopy, and paraffin blocks were macrodissected using a core needle to specifically isolate DNA. Illumina Whole Genome Sequencing was used for microbial sequence identification and subsequent taxonomic classification using the PathSeq tool. Results We observed significant differences between the microbiome of CD samples vs inflammatory bowel disease–free controls, including depletion of Bacteroidetes and Clostridia. Notably, microbial composition at the phyla level did not differ markedly between healthy and diseased areas of CD patients. However, we observed enrichment of potentially pathogenic organisms at the species level. Conclusions Our study showed dysbiosis within deeper layers of the ileum of CD patients, specifically enrichment of enterotoxigenic Staphylococcus aureus and an environmental Mycobacterium species not described previously. Future studies with larger cohort sizes are warranted to confirm these findings. Studies would benefit from effective microbial DNA extraction methods from paraffin sections and host nucleic acid depletion approaches to increase microbial read coverage.

Collaboration


Dive into the Samuel S. Freeman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge