Samuel T. Turvey
Zoological Society of London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel T. Turvey.
PLOS ONE | 2007
Nick J. B. Isaac; Samuel T. Turvey; Ben Collen; Carly Waterman; Jonathan E. M. Baillie
Conservation priority setting based on phylogenetic diversity has frequently been proposed but rarely implemented. Here, we define a simple index that measures the contribution made by different species to phylogenetic diversity and show how the index might contribute towards species-based conservation priorities. We describe procedures to control for missing species, incomplete phylogenetic resolution and uncertainty in node ages that make it possible to apply the method in poorly known clades. We also show that the index is independent of clade size in phylogenies of more than 100 species, indicating that scores from unrelated taxonomic groups are likely to be comparable. Similar scores are returned under two different species concepts, suggesting that the index is robust to taxonomic changes. The approach is applied to a near-complete species-level phylogeny of the Mammalia to generate a global priority list incorporating both phylogenetic diversity and extinction risk. The 100 highest-ranking species represent a high proportion of total mammalian diversity and include many species not usually recognised as conservation priorities. Many species that are both evolutionarily distinct and globally endangered (EDGE species) do not benefit from existing conservation projects or protected areas. The results suggest that global conservation priorities may have to be reassessed in order to prevent a disproportionately large amount of mammalian evolutionary history becoming extinct in the near future.
Biology Letters | 2007
Samuel T. Turvey; Robert L. Pitman; Barbara L. Taylor; Jay Barlow; Tomonari Akamatsu; Leigh A. Barrett; Xiujiang Zhao; Randall R. Reeves; Brent S. Stewart; Kexiong Wang; Zhuo Wei; Xianfeng Zhang; L.T Pusser; Michael Richlen; John R. Brandon; Ding Wang
The Yangtze River dolphin or baiji (Lipotes vexillifer), an obligate freshwater odontocete known only from the middle-lower Yangtze River system and neighbouring Qiantang River in eastern China, has long been recognized as one of the worlds rarest and most threatened mammal species. The status of the baiji has not been investigated since the late 1990s, when the surviving population was estimated to be as low as 13 individuals. An intensive six-week multi-vessel visual and acoustic survey carried out in November–December 2006, covering the entire historical range of the baiji in the main Yangtze channel, failed to find any evidence that the species survives. We are forced to conclude that the baiji is now likely to be extinct, probably due to unsustainable by-catch in local fisheries. This represents the first global extinction of a large vertebrate for over 50 years, only the fourth disappearance of an entire mammal family since AD 1500, and the first cetacean species to be driven to extinction by human activity. Immediate and extreme measures may be necessary to prevent the extinction of other endangered cetaceans, including the sympatric Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis).
Philosophical Transactions of the Royal Society B | 2011
Ben Collen; Samuel T. Turvey; Carly Waterman; Helen M. R. Meredith; Tyler S. Kuhn; Jonathan E. M. Baillie; Nick J. B. Isaac
Under the impact of human activity, global extinction rates have risen a thousand times higher than shown in the fossil record. The resources available for conservation are insufficient to prevent the loss of much of the worlds threatened biodiversity during this crisis. Conservation planners have been forced to prioritize their protective activities, in the context of great uncertainty. This has become known as ‘the agony of choice’. A range of methods have been proposed for prioritizing species for conservation attention; one of the most strongly supported is prioritizing those species that maximize phylogenetic distinctiveness (PD). We evaluate how a composite measure of extinction risk and phylogenetic isolation (EDGE) has been used to prioritize species according to their degree of unique evolutionary history (evolutionary distinctiveness, ED) weighted by conservation urgency (global endangerment, GE). We review PD-based approaches and provide an updated list of EDGE mammals using the 2010 IUCN Red List. We evaluate how robust this method is to changes in phylogenetic uncertainty, knowledge of taxonomy and extinction risk, and examine how mammalian species that rank highly in EDGE score are representative of the collective from which they are drawn.
Nature | 2005
Samuel T. Turvey; Owen R. Green; Richard N. Holdaway
Cyclical growth marks in cortical bone, deposited before attainment of adult body size, reflect osteogenetic changes caused by annual rhythms and are a general phenomenon in non-avian ectothermic and endothermic tetrapods. However, the growth periods of ornithurines (the theropod group including all modern birds) are usually apomorphically shortened to less than a year, so annual growth marks are almost unknown in this group. Here we show that cortical growth marks are frequent in long bones of New Zealands moa (Aves: Dinornithiformes), a recently extinct ratite order. Moa showed the exaggerated K-selected life-history strategy formerly common in the New Zealand avifauna, and in some instances took almost a decade to attain skeletal maturity. This indicates that reproductive maturity in moa was extremely delayed relative to all extant birds. The two presently recognized moa families (Dinornithidae and Emeidae) also showed different postnatal growth rates, which were associated with their relative differences in body size. Both species of giant Dinornis moa attained their massive stature (up to 240 kg live mass) by accelerating their juvenile growth rate compared to the smaller emeid moa species, rather than by extending the skeletal growth period.
Philosophical Transactions of the Royal Society B | 2011
Samuel T. Turvey; Susanne A. Fritz
Although the recent historical period is usually treated as a temporal base-line for understanding patterns of mammal extinction, mammalian biodiversity loss has also taken place throughout the Late Quaternary. We explore the spatial, taxonomic and phylogenetic patterns of 241 mammal species extinctions known to have occurred during the Holocene up to the present day. To assess whether our understanding of mammalian threat processes has been affected by excluding these taxa, we incorporate extinct species data into analyses of the impact of body mass on extinction risk. We find that Holocene extinctions have been phylogenetically and spatially concentrated in specific taxa and geographical regions, which are often not congruent with those disproportionately at risk today. Large-bodied mammals have also been more extinction-prone in most geographical regions across the Holocene. Our data support the extinction filter hypothesis, whereby regional faunas from which susceptible species have already become extinct now appear less threatened; they may also suggest that different processes are responsible for driving past and present extinctions. We also find overall incompleteness and inter-regional biases in extinction data from the recent fossil record. Although direct use of fossil data in future projections of extinction risk is therefore not straightforward, insights into extinction processes from the Holocene record are still useful in understanding mammalian threat.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Siobhán B. Cooke; Alfred L. Rosenberger; Samuel T. Turvey
A new extinct Late Quaternary platyrrhine from Haiti, Insulacebus toussaintiana, is described here from the most complete Caribbean subfossil primate dentition yet recorded, demonstrating the likely coexistence of two primate species on Hispaniola. Like other Caribbean platyrrhines, I. toussaintiana exhibits primitive features resembling early Middle Miocene Patagonian fossils, reflecting an early derivation before the Amazonian community of modern New World anthropoids was configured. This, in combination with the young age of the fossils, provides a unique opportunity to examine a different parallel radiation of platyrrhines that survived into modern times, but is only distantly related to extant mainland forms. Their ecological novelty is indicated by their unique dental proportions, and by their relatively large estimated body weights, possibly an island effect, which places the group in a size class not exploited by mainland South American monkeys. Several features tie the new species to the extinct Jamaican monkey Xenothrix mcgregori, perhaps providing additional evidence for an inter-Antillean clade.
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES , 277 (1697) pp. 3139-3147. (2010) | 2010
Samuel T. Turvey; Leigh A. Barrett; Tom Hart; Ben Collen; Hao Yujiang; Zhang Lei; Zhang Xinqiao; Wang Xianyan; Huang Yadong; Zhou Kaiya; Wang Ding
Geographical range contraction is a fundamental ecological characteristic of species population decline, but relatively little investigation has been conducted into general trends in the dynamic properties of range collapse. The Yangtze River dolphin or baiji (Lipotes vexillifer), probably the first large mammal species to have become extinct in over 50 years, was believed to have experienced major range collapse during its decline through progressive large-scale range contraction and fragmentation. This range-collapse model is challenged by a new dataset of 406 baiji last-sighting records collected from across the baijis historical range during an interview survey of Yangtze fishing communities. Although baiji regional abundance may have varied across its range, analyses of the extensive new sighting series provide comprehensive evidence that baiji population decline was not associated with any major contraction in geographical range across the middle–lower Yangtze drainage, even in the decade immediately before probable global extinction of the species. Extinction risk in baiji was therefore seemingly not related to evidence of range collapse. Baiji apparently underwent large-scale periodic and seasonal movements across their range, and we propose that range contraction and fragmentation may not be general biogeographic characteristics for declining populations of mobile species in connected landscapes.
Proceedings of the Royal Society of London: Biological Sciences , 282 (1813) (2015) | 2015
Samuel T. Turvey; Jennifer J. Crees; Martina M. I. Di Fonzo
Extinction events typically represent extended processes of decline that cannot be reconstructed using short-term studies. Long-term archives are necessary to determine past baselines and the extent of human-caused biodiversity change, but the capacity of historical datasets to provide predictive power for conservation must be assessed within a robust analytical framework. Local Chinese gazetteers represent a more than 400-year country-level dataset containing abundant information on past environmental conditions and include extensive records of gibbons, which have a restricted present-day distribution but formerly occurred across much of China. Gibbons show pre-twentieth century range contraction, with significant fragmentation by the mid-eighteenth century and population loss escalating in the late nineteenth century. Isolated gibbon populations persisted for about 40 years before local extinction. Populations persisted for longer at higher elevations, and disappeared earlier from northern and eastern regions, with the biogeography of population loss consistent with the contagion model of range collapse in response to human demographic expansion spreading directionally across China. The long-term Chinese historical record can track extinction events and human interactions with the environment across much longer timescales than are usually addressed in ecology, contributing novel baselines for conservation and an increased understanding of extinction dynamics and species vulnerability or resilience to human pressures.
Proceedings of the Royal Society B: Biological Sciences | 2015
Selina Brace; Samuel T. Turvey; Marcelo Weksler; Menno Hoogland; Ian Barnes
Identifying general patterns of colonization and radiation in island faunas is often hindered by past human-caused extinctions. The insular Caribbean is one of the only complex oceanic-type island systems colonized by land mammals, but has witnessed the globally highest level of mammalian extinction during the Holocene. Using ancient DNA analysis, we reconstruct the evolutionary history of one of the Caribbeans now-extinct major mammal groups, the insular radiation of oryzomyine rice rats. Despite the significant problems of recovering DNA from prehistoric tropical archaeological material, it was possible to identify two discrete Late Miocene colonizations of the main Lesser Antillean island chain from mainland South America by oryzomyine lineages that were only distantly related. A high level of phylogenetic diversification was observed within oryzomyines across the Lesser Antilles, even between allopatric populations on the same island bank. The timing of oryzomyine colonization is closely similar to the age of several other Caribbean vertebrate taxa, suggesting that geomorphological conditions during the Late Miocene facilitated broadly simultaneous overwater waif dispersal of many South American lineages to the Lesser Antilles. These data provide an important baseline by which to further develop the Caribbean as a unique workshop for studying island evolution.
Molecular Ecology | 2012
Selina Brace; Ian Barnes; Adam Powell; Rebecca M. Pearson; Lance G. Woolaver; Mark G. Thomas; Samuel T. Turvey
Hispaniola is a geotectonically complex island consisting of two palaeo‐islands that docked c. 10 Ma, with a further geological boundary subdividing the southern palaeo‐island into eastern and western regions. All three regions have been isolated by marine barriers during the late Cenozoic and possess biogeographically distinct terrestrial biotas. However, there is currently little evidence to indicate whether Hispaniolan mammals show distributional patterns reflecting this geotectonic history, as the island’s endemic land mammal fauna is now almost entirely extinct. We obtained samples of Hispaniolan hutia (Plagiodontia aedium), one of the two surviving Hispaniolan land mammal species, through fieldwork and historical museum collections from seven localities distributed across all three of the island’s biogeographic regions. Phylogenetic analysis using mitochondrial DNA (cytochrome b) reveals a pattern of historical allopatric lineage divergence in this species, with the spatial distribution of three distinct hutia lineages biogeographically consistent with the island’s geotectonic history. Coalescent modelling, approximate Bayesian computation and approximate Bayes factor analyses support our phylogenetic inferences, indicating near‐complete genetic isolation of these biogeographically separate populations and differing estimates of their effective population sizes. Spatial congruence of hutia lineage divergence is not however matched by temporal congruence with divergences in other Hispaniolan taxa or major events in Hispaniola’s geotectonic history; divergence between northern and southern hutia lineages dates to c. 0.6 Ma, significantly later than the unification of the palaeo‐islands. The three allopatric Plagiodontia populations should all be treated as distinct management units for conservation, with particular attention required for the northern population (low haplotype diversity) and the south‐western population (high haplotype diversity but highly threatened).