Sanaz Rezaeian
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sanaz Rezaeian.
Earthquake Spectra | 2014
Yousef Bozorgnia; Norman A. Abrahamson; Linda Al Atik; Timothy D. Ancheta; Gail M. Atkinson; Jack W. Baker; Annemarie S. Baltay; David M. Boore; Kenneth W. Campbell; Brian Chiou; Robert B. Darragh; Steve Day; Jennifer L. Donahue; Robert W. Graves; Nick Gregor; Thomas C. Hanks; I. M. Idriss; Ronnie Kamai; Tadahiro Kishida; Albert R. Kottke; Stephen Mahin; Sanaz Rezaeian; Badie Rowshandel; Emel Seyhan; Shrey K. Shahi; Tom Shantz; Walter J. Silva; Paul Spudich; Jonathan P. Stewart; Jennie Watson-Lamprey
The NGA-West2 project is a large multidisciplinary, multi-year research program on the Next Generation Attenuation (NGA) models for shallow crustal earthquakes in active tectonic regions. The research project has been coordinated by the Pacific Earthquake Engineering Research Center (PEER), with extensive technical interactions among many individuals and organizations. NGA-West2 addresses several key issues in ground-motion seismic hazard, including updating the NGA database for a magnitude range of 3.0–7.9; updating NGA ground-motion prediction equations (GMPEs) for the “average” horizontal component; scaling response spectra for damping values other than 5%; quantifying the effects of directivity and directionality for horizontal ground motion; resolving discrepancies between the NGA and the National Earthquake Hazards Reduction Program (NEHRP) site amplification factors; analysis of epistemic uncertainty for NGA GMPEs; and developing GMPEs for vertical ground motion. This paper presents an overview of the NGA-West2 research program and its subprojects.
Earthquake Spectra | 2015
Mark D. Petersen; Morgan P. Moschetti; Peter Powers; Charles S. Mueller; Kathleen M. Haller; Arthur Frankel; Yuehua Zeng; Sanaz Rezaeian; Stephen C. Harmsen; Oliver S. Boyd; Ned Field; Rui Chen; Kenneth S. Rukstales; Nico Luco; Russell L. Wheeler; Robert A. Williams; Anna H. Olsen
New seismic hazard maps have been developed for the conterminous United States using the latest data, models, and methods available for assessing earthquake hazard. The hazard models incorporate new information on earthquake rupture behavior observed in recent earthquakes; fault studies that use both geologic and geodetic strain rate data; earthquake catalogs through 2012 that include new assessments of locations and magnitudes; earthquake adaptive smoothing models that more fully account for the spatial clustering of earthquakes; and 22 ground motion models, some of which consider more than double the shaking data applied previously. Alternative input models account for larger earthquakes, more complicated ruptures, and more varied ground shaking estimates than assumed in earlier models. The ground motions, for levels applied in building codes, differ from the previous version by less than ±10% over 60% of the country, but can differ by ±50% in localized areas. The models are incorporated in insurance rates, risk assessments, and as input into the U.S. building code provisions for earthquake ground shaking.
Earthquake Spectra | 2014
Sanaz Rezaeian; Mark D. Petersen; Morgan P. Moschetti; Peter Powers; Stephen C. Harmsen; Arthur Frankel
The U.S. National Seismic Hazard Maps (NSHMs) have been an important component of seismic design regulations in the United States for the past several decades. These maps present earthquake ground shaking intensities at specified probabilities of being exceeded over a 50-year time period. The previous version of the NSHMs was developed in 2008; during 2012 and 2013, scientists at the U.S. Geological Survey have been updating the maps based on their assessment of the “best available science,” resulting in the 2014 NSHMs. The update includes modifications to the seismic source models and the ground motion models (GMMs) for sites across the conterminous United States. This paper focuses on updates in the Western United States (WUS) due to the use of new GMMs for shallow crustal earthquakes in active tectonic regions developed by the Next Generation Attenuation (NGA-West2) project. Individual GMMs, their weighted combination, and their impact on the hazard maps relative to 2008 are discussed. In general, the combined effects of lower medians and increased standard deviations in the new GMMs have caused only small changes, within 5–20%, in the probabilistic ground motions for most sites across the WUS compared to the 2008 NSHMs.
Earthquake Spectra | 2015
Sanaz Rezaeian; Mark D. Petersen; Morgan P. Moschetti
The National Seismic Hazard Maps (NSHMs) are an important component of seismic design regulations in the United States. This paper compares hazard using the new suite of ground motion models (GMMs) relative to hazard using the suite of GMMs applied in the previous version of the maps. The new source characterization models are used for both cases. A previous paper (Rezaeian et al. 2014) discussed the five NGA-West2 GMMs used for shallow crustal earthquakes in the Western United States (WUS), which are also summarized here. Our focus in this paper is on GMMs for earthquakes in stable continental regions in the Central and Eastern United States (CEUS), as well as subduction interface and deep intraslab earthquakes. We consider building code hazard levels for peak ground acceleration (PGA), 0.2-s, and 1.0-s spectral accelerations (SAs) on uniform firm-rock site conditions. The GMM modifications in the updated version of the maps created changes in hazard within 5% to 20% in WUS; decreases within 5% to 20% in CEUS; changes within 5% to 15% for subduction interface earthquakes; and changes involving decreases of up to 50% and increases of up to 30% for deep intraslab earthquakes for most U.S. sites. These modifications were combined with changes resulting from modifications in the source characterization models to obtain the new hazard maps.
Earthquake Spectra | 2014
Sanaz Rezaeian; Yousef Bozorgnia; I. M. Idriss; Norman A. Abrahamson; Kenneth W. Campbell; Walter J. Silva
Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.
Bulletin of the Seismological Society of America | 2015
Sanaz Rezaeian; Peng Zhong; Stephen Hartzell; Farzin Zareian
Abstract Simulated earthquake ground motions can be used in many recent engineering applications that require time series as input excitations. However, applicability and validation of simulations are subjects of debate in the seismological and engineering communities. We propose a validation methodology at the waveform level and directly based on characteristics that are expected to influence most structural and geotechnical response parameters. In particular, three time-dependent validation metrics are used to evaluate the evolving intensity, frequency, and bandwidth of a waveform. These validation metrics capture nonstationarities in intensity and frequency content of waveforms, making them ideal to address nonlinear response of structural systems. A two-component error vector is proposed to quantify the average and shape differences between these validation metrics for a simulated and recorded ground-motion pair. Because these metrics are directly related to the waveform characteristics, they provide easily interpretable feedback to seismologists for modifying their ground-motion simulation models. To further simplify the use and interpretation of these metrics for engineers, it is shown how six scalar key parameters, including duration, intensity, and predominant frequency, can be extracted from the validation metrics. The proposed validation methodology is a step forward in paving the road for utilization of simulated ground motions in engineering practice and is demonstrated using examples of recorded and simulated ground motions from the 1994 Northridge, California, earthquake.
Earthquake Spectra | 2014
Sanaz Rezaeian; Yousef Bozorgnia; I. M. Idriss; Norman A. Abrahamson; Kenneth W. Campbell; Walter J. Silva
This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust elastic response spectral ordinates for the vertical component of earthquake ground motion at a 5% viscous damping ratio to ordinates at damping ratios between 0.5% and 30%. Using the extensive NGA-West2 database of recorded ground motions from worldwide shallow crustal earthquakes in active tectonic regions, a functional form for the median DSF is proposed that depends on the damping ratio, spectral period, earthquake magnitude, and distance. Standard deviation is a function of the damping ratio and spectral period. The proposed model is compared to the DSF for the “average” horizontal component. In general, the peak in DSF is shifted toward shorter periods and is farther from unity for the vertical component. Also, the standard deviation of DSF for vertical motion is slightly higher than that observed for the “average” horizontal component.
Earthquake Spectra | 2015
Oliver S. Boyd; Kathleen M. Haller; Nicolas Luco; Morgan P. Moschetti; Charles S. Mueller; Mark D. Petersen; Sanaz Rezaeian; Justin L. Rubinstein
The USGS National Seismic Hazard Maps were updated in 2014 and included several important changes for the central United States (CUS). Background seismicity sources were improved using a new moment-magnitude-based catalog; a new adaptive, nearest-neighbor smoothing kernel was implemented; and maximum magnitudes for background sources were updated. Areal source zones developed by the Central and Eastern United States Seismic Source Characterization for Nuclear Facilities project were simplified and adopted. The weighting scheme for ground motion models was updated, giving more weight to models with a faster attenuation with distance compared to the previous maps. Overall, hazard changes (2% probability of exceedance in 50 years, across a range of ground-motion frequencies) were smaller than 10% in most of the CUS relative to the 2008 USGS maps despite new ground motion models and their assigned logic tree weights that reduced the probabilistic ground motions by 5–20%.
Earthquake Spectra | 2015
Charles S. Mueller; Oliver S. Boyd; Mark D. Petersen; Morgan P. Moschetti; Sanaz Rezaeian; Allison M. Shumway
The U.S. Geological Survey seismic hazard maps for the central and eastern United States were updated in 2014. We analyze results and changes for the eastern part of the region. Ratio maps are presented, along with tables of ground motions and deaggregations for selected cities. The Charleston fault model was revised, and a new fault source for Charlevoix was added. Background seismicity sources utilized an updated catalog, revised completeness and recurrence models, and a new adaptive smoothing procedure. Maximum-magnitude models and ground motion models were also updated. Broad, regional hazard reductions of 5%–20% are mostly attributed to new ground motion models with stronger near-source attenuation. The revised Charleston fault geometry redistributes local hazard, and the new Charlevoix source increases hazard in northern New England. Strong increases in mid- to high-frequency hazard at some locations—for example, southern New Hampshire, central Virginia, and eastern Tennessee—are attributed to updat...
Earthquake Spectra | 2015
Kathleen M. Haller; Morgan P. Moschetti; Charles S. Mueller; Sanaz Rezaeian; Mark D. Petersen; Yuehua Zeng
The 2014 national seismic-hazard model for the conterminous United States incorporates new scientific results and important model adjustments. The current model includes updates to the historical catalog, which is spatially smoothed using both fixed-length and adaptive-length smoothing kernels. Fault-source characterization improved by adding faults, revising rates of activity, and incorporating new results from combined inversions of geologic and geodetic data. The update also includes a new suite of published ground motion models. Changes in probabilistic ground motion are generally less than 10% in most of the Intermountain West compared to the prior assessment, and ground-motion hazard in four Intermountain West cities illustrates the range and magnitude of change in the region. Seismic hazard at reference sites in Boise and Reno increased as much as 10%, whereas hazard in Salt Lake City decreased 5–6%. The largest change was in Las Vegas, where hazard increased 32–35%.