Sandeep Sampangi
Royal Brisbane and Women's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandeep Sampangi.
American Journal of Physiology-renal Physiology | 2013
Andrew J. Kassianos; Xiangju Wang; Sandeep Sampangi; Kimberly A. Muczynski; Helen Healy; Ray Wilkinson
Dendritic cells (DCs) play critical roles in immune-mediated kidney diseases. Little is known, however, about DC subsets in human chronic kidney disease, with previous studies restricted to a limited set of pathologies and to using immunohistochemical methods. In this study, we developed novel protocols for extracting renal DC subsets from diseased human kidneys and identified, enumerated, and phenotyped them by multicolor flow cytometry. We detected significantly greater numbers of total DCs as well as CD141(hi) and CD1c(+) myeloid DC (mDCs) subsets in diseased biopsies with interstitial fibrosis than diseased biopsies without fibrosis or healthy kidney tissue. In contrast, plasmacytoid DC numbers were significantly higher in the fibrotic group compared with healthy tissue only. Numbers of all DC subsets correlated with loss of kidney function, recorded as estimated glomerular filtration rate. CD141(hi) DCs expressed C-type lectin domain family 9 member A (CLEC9A), whereas the majority of CD1c(+) DCs lacked the expression of CD1a and DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), suggesting these mDC subsets may be circulating CD141(hi) and CD1c(+) blood DCs infiltrating kidney tissue. Our analysis revealed CLEC9A(+) and CD1c(+) cells were restricted to the tubulointerstitium. Notably, DC expression of the costimulatory and maturation molecule CD86 was significantly increased in both diseased cohorts compared with healthy tissue. Transforming growth factor-β levels in dissociated tissue supernatants were significantly elevated in diseased biopsies with fibrosis compared with nonfibrotic biopsies, with mDCs identified as a major source of this profibrotic cytokine. Collectively, our data indicate that activated mDC subsets, likely recruited into the tubulointerstitium, are positioned to play a role in the development of fibrosis and, thus, progression to chronic kidney disease.
Kidney International | 2015
Andrew J. Kassianos; Xiangju Wang; Sandeep Sampangi; Sadia Afrin; Ray Wilkinson; Helen Healy
Chemokines play pivotal roles in tissue recruitment and retention of leukocytes, with CX3CR1 recently identified as a chemokine receptor that selectively targets mouse kidney dendritic cells (DCs). We have previously demonstrated increased tubulointerstitial recruitment of human transforming growth factor-β (TGF-β)-producing DCs in renal fibrosis and chronic kidney disease (CKD). However, little is known about the mechanism of human DC recruitment and retention within the renal interstitium. We identified CD1c+ DCs as the predominant source of profibrotic TGF-β and highest expressors of the fractalkine receptor CX3CR1 within the renal DC compartment. Immunohistochemical analysis of diseased human kidney biopsies showed colocalization of CD1c+ DCs with fractalkine-positive proximal tubular epithelial cells (PTECs). Human primary PTEC activation with interferon-γ and tumor necrosis factor-α induced both secreted and surface fractalkine expression. In line with this, we found fractalkine-dependent chemotaxis of CD1c+ DCs to supernatant from activated PTECs. Finally, in comparison with unactivated PTECs, we showed significantly increased adhesion of CD1c+ DCs to activated PTECs via a fractalkine-dependent mechanism. Thus, TGF-β-producing CD1c+ DCs are recruited and retained in the renal tubulointerstitium by PTEC-derived fractalkine. These cells are then positioned to play a role in the development of fibrosis and progression of chronic kidney disease.
Nephrology Dialysis Transplantation | 2013
Andrew J. Kassianos; Sandeep Sampangi; Xiangju Wang; Kathrein E. Roper; Kenneth W. Beagley; Helen Healy; Ray Wilkinson
BACKGROUND We have previously demonstrated that human kidney proximal tubule epithelial cells (PTEC) are able to modulate autologous T and B lymphocyte responses. It is well established that dendritic cells (DC) are responsible for the initiation and direction of adaptive immune responses and that these cells occur in the renal interstitium in close apposition to PTEC under inflammatory disease settings. However, there is no information regarding the interaction of PTEC with DC in an autologous human context. METHODS Human monocytes were differentiated into monocyte-derived DC (MoDC) in the absence or presence of primary autologous activated PTEC and matured with polyinosinic:polycytidylic acid [poly(I:C)], while purified, pre-formed myeloid blood DC (CD1c(+) BDC) were cultured with autologous activated PTEC in the absence or presence of poly(I:C) stimulation. DC responses were monitored by surface antigen expression, cytokine secretion, antigen uptake capacity and allogeneic T-cell-stimulatory ability. RESULTS The presence of autologous activated PTEC inhibited the differentiation of monocytes to MoDC. Furthermore, MoDC differentiated in the presence of PTEC displayed an immature surface phenotype, efficient phagocytic capacity and, upon poly(I:C) stimulation, secreted low levels of pro-inflammatory cytokine interleukin (IL)-12p70, high levels of anti-inflammatory cytokine IL-10 and induced weak Th1 responses. Similarly, pre-formed CD1c(+) BDC matured in the presence of PTEC exhibited an immature tolerogenic surface phenotype, strong endocytic and phagocytic ability and stimulated significantly attenuated T-cell proliferative responses. CONCLUSIONS Our data suggest that activated PTEC regulate human autologous immunity via complex interactions with DC. The ability of PTEC to modulate autologous DC function has important implications for the dampening of pro-inflammatory immune responses within the tubulointerstitium in renal injuries. Further dissection of the mechanisms of PTEC modulation of autologous immune responses may offer targets for therapeutic intervention in renal medicine.
PLOS ONE | 2014
Ray Wilkinson; Xiangju Wang; Andrew J. Kassianos; Steven Zuryn; Kathrein E. Roper; Andrew Osborne; Sandeep Sampangi; Leo Francis; Vishwas Raghunath; Helen Healy
Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.
Nephrology Dialysis Transplantation | 2015
Sandeep Sampangi; Xiangju Wang; Kenneth W. Beagley; Travis J. Klein; Sadia Afrin; Helen Healy; Ray Wilkinson; Andrew J. Kassianos
BACKGROUND Descriptions of inflammatory cells infiltrating the human kidney rarely mention B cells, other than in the specific scenario of transplantation. In these reports, B cells are localized almost exclusively within the kidney tubulointerstitium where they are ideally placed to interact with proximal tubule epithelial cells (PTEC). We have previously shown that activated PTEC down-modulate autologous T lymphocyte and dendritic cell function. In this report, we extend these prior studies to describe PTEC-B cell interactions. METHODS Stimulated B cells were cultured in the absence or presence of activated autologous human PTEC and monitored for proliferation, surface antigen expression, cytokine secretion and antibody (Ab) production. RESULTS PTEC decreased B cell proliferative responses, whilst B cells cultured in the presence of PTEC displayed decreased levels of CD27, a marker of plasma B cells and memory cells. Interestingly, autologous PTEC also significantly decreased the number of B cells secreting both IgG and IgM and overall levels of Ab production. Transwell studies demonstrated that this modulation was primarily contact-dependent, and blocking studies with anti-PD-L1 led to partial restoration in Ab production. Further blocking studies targeting soluble HLA-G (sHLA-G) and IDO, two other immunoinhibitory molecules also up-regulated in our activated PTEC, demonstrated minor restoration of Ab responses. DISCUSSION We report, for the first time, that PTEC are also able to modulate autologous B-cell phenotype and function via complex contact-dependent (PD-L1), soluble (sHLA-G) and intracellular (IDO) factors. We hypothesize that such mechanisms may have evolved to maintain peripheral immune-homeostasis, especially within the inflammatory milieu that exists within many kidney diseases.
PLOS ONE | 2015
Sandeep Sampangi; Andrew J. Kassianos; Xiangju Wang; Kenneth W. Beagley; Travis J. Klein; Sadia Afrin; Helen Healy; Ray Wilkinson
Proximal tubule epithelial cells (PTEC) of the kidney line the proximal tubule downstream of the glomerulus and play a major role in the re-absorption of small molecular weight proteins that may pass through the glomerular filtration process. In the perturbed disease state PTEC also contribute to the inflammatory disease process via both positive and negative mechanisms via the production of inflammatory cytokines which chemo-attract leukocytes and the subsequent down-modulation of these cells to prevent uncontrolled inflammatory responses. It is well established that dendritic cells are responsible for the initiation and direction of adaptive immune responses. Both resident and infiltrating dendritic cells are localised within the tubulointerstitium of the renal cortex, in close apposition to PTEC, in inflammatory disease states. We previously demonstrated that inflammatory PTEC are able to modulate autologous human dendritic cell phenotype and functional responses. Here we extend these findings to characterise the mechanisms of this PTEC immune-modulation using primary human PTEC and autologous monocyte-derived dendritic cells (MoDC) as the model system. We demonstrate that PTEC express three inhibitory molecules: (i) cell surface PD-L1 that induces MoDC expression of PD-L1; (ii) intracellular IDO that maintains the expression of MoDC CD14, drives the expression of CD80, PD-L1 and IL-10 by MoDC and inhibits T cell stimulatory capacity; and (iii) soluble HLA-G (sHLA-G) that inhibits HLA-DR and induces IL-10 expression by MoDC. Collectively the results demonstrate that primary human PTEC are able to modulate autologous DC phenotype and function via multiple complex pathways. Further dissection of these pathways is essential to target therapeutic strategies in the treatment of inflammatory kidney disorders.
Faculty of Health; Institute of Health and Biomedical Innovation; Science & Engineering Faculty | 2015
Sandeep Sampangi; Andrew J. Kassianos; Xiangju Wang; Kenneth W. Beagley; Travis J. Klein; Sadia Afrin; Helen Healy; Ray Wilkinson
PLOS ONE | 2015
Sandeep Sampangi; Andrew J. Kassianos; Xiangju Wang; Kenneth W. Beagley; Travis J. Klein; Sadia Afrin; Helen Healy; Ray Wilkinson
PLOS ONE | 2015
Sandeep Sampangi; Andrew J. Kassianos; Xiangju Wang; Kenneth W. Beagley; Travis J. Klein; Sadia Afrin; Helen Healy; Ray Wilkinson
Nephrology | 2014
Andrew J. Kassianos; Xiangju Wang; Sandeep Sampangi; Sadia Afrin; Ray Wilkinson; Helen Healy