Sandip Hindocha
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandip Hindocha.
Hand | 2009
Sandip Hindocha; Duncan A. McGrouther; Ardeshir Bayat
Dupuytren’s Disease (DD) is a common, fibroproliferative disorder affecting the palmar surface of the hands which is often irreversible and progressive. Understanding the epidemiology of DD is important in order to provide clues to its etiopathogenesis. This review aims to evaluate the epidemiological studies carried out in DD since 1951. Studies evaluating the epidemiology of DD were searched using Medline, Pubmed, and Scopus which dated back from 1951 to current date. Inclusion criteria were any studies investigating the prevalence or incidence of DD in any population group. A total of 620 articles were cited. Forty-nine studies were subsequently identified as relevant to evaluating the epidemiology of DD. The prevalence of DD in all studies increased with age with a male to female ratio of approximately 5.9:1. Prevalence rates ranged from 0.2% to 56% in varying age, population groups, and methods of data collection. The highest prevalence rate was reported in a study group of epileptic patients. Although, only one study calculated the incidence (as opposed to prevalence) of DD to be equal to 34.3 per 100,000 men (0.03%). In conclusion, the prevalence of DD in different geographical locations is extremely variable, and it is not clear whether this is genetic, environmental, or a combination of both. The majority of the prevalence studies have been conducted in Scandinavia or the UK, and the vast changes in population structure, the changes in prevalence of associated diseases, and the change in diagnostic criteria of DD makes understanding the epidemiology of this condition difficult.
The Open Orthopaedics Journal | 2011
Reza Mafi; Sandip Hindocha; Pouya Mafi; Michelle Griffin; Wasim S. Khan
Mesenchymal stem cells (MSCs) were first discovered by Friedenstein and his colleagues in 1976 from bone marrow. The unique property of these cells was their potential to develop into fibroblastic colony forming cells. Since Friedenstein’s discovery of these cells the interest in adult MSCs has been progressively growing. Nowadays MSCs are defined as undeveloped biological cells capable of proliferation, self renewal and regenerating tissues. All these properties of MSCs have been discovered in the past 35 years. MSCs can play a crucial role in tissue engineering, organogenesis, gene therapy, transplants as well as tissue injuries. These cells were mainly extracted from bone marrow but there have been additional sources for MSCs discovered in the laboratories including: muscle, dermis, trabecular bone, adipose tissue, periosteum, pericyte, blood, synovial membrane and so forth. The discovery of the alternative sources of MSCs helps widen the application of these cells in different areas of medicine. By way of illustration, they can be used in various therapeutic purposes such as tissue regeneration and repair in musculoskeletal diseases including osteonecrosis of femoral head, stimulating growth in children with osteogenesis imperfecta, disc regeneration, osteoarthritis and duchenne muscular dystrophy. In order to fully comprehend the characteristics and potential of MSCs future studies in this field are essential.
The Open Orthopaedics Journal | 2012
Michelle Griffin; Sandip Hindocha; D Jordan; M Saleh; Wasim S. Khan
Flexor tendon injuries still remain a challenging condition to manage to ensure optimal outcome for the patient. Since the first flexor tendon repair was described by Kirchmayr in 1917, several approaches to flexor tendon injury have enabled successful repairs rates of 70-90%. Primary surgical repair results in better functional outcome compared to secondary repair or tendon graft surgery. Flexor tendon injury repair has been extensively researched and the literature demonstrates successful repair requires minimal gapping at the repair site or interference with tendon vascularity, secure suture knots, smooth junction of tendon end and having sufficient strength for healing. However, the exact surgical approach to achieve success being currently used among surgeons is still controversial. Therefore, this review aims to discuss the results of studies demonstrating the current knowledge regarding the optimal approach for flexor tendon repair. Post-operative rehabilitation for flexor tendon surgery is another area, which has caused extensive debate in hand surgery. The trend to more active mobilisation protocols seems to be favoured but further study in this area is needed to find the protocol, which achieves function and gliding but avoids rupture of the tendons. Lastly despite success following surgery complications commonly still occur post surgery, including adhesion formation, tendon rupture and stiffness of the joints. Therefore, this review aims to discuss the appropriate management of these difficulties post surgery. New techniques in management of flexor tendon will also be discussed including external laser devices, addition of growth factors and cytokines.
The Open Orthopaedics Journal | 2011
E.G Khaled; M Saleh; Sandip Hindocha; Michelle Griffin; Wasim S. Khan
A bone graft has been the gold standard treatment for repairing bone defects. However, due to bone grafts associated donor site morbidity several alternative bone substitutes options have been made available but with their added expense and limited osteoinductive properties they are not ideal. Therefore, research has begun in tissue engineering to investigate stem cells, which are one of the body’s own mechanisms used to repair bone. Stem cells are clonogenic undifferentiated cells capable of self-renewal. Readily available from numerous of sources stem cells have the potential to differentiate in osteoblasts and chrondrocytes showing capability to repair both bone and cartilage. The known immunologic properties of stem cells further enhance their therapeutic appeal. Stem cells have shown to be excellent carriers for gene transfer having the capability to be transduced. Gene transfer could enable growth factors and bone morphogentic proteins to enhance bone repair. Stem cells are implanted onto scaffolds, which are structures capable of supporting tissue formation by allowing cell migration, proliferation and differentiation. Research aims to produce scaffolds that deliver and retain cells, allow for cell attachment has adequate biodegradability, biocompatibility and non-immunogenicity. However, having tried and testing numerous materials including synthetic and natural products research into the perfect scaffold product continues. This review aims to explain how stem cells were discovered, the techniques used to isolate stem cells, identify and manipulate them down different cell lineages and discuss the research into using stem cells to reconstruct bone using genetic modification and scaffolds.
The Open Orthopaedics Journal | 2012
Nigel Tapiwa Mabvuure; Marco Malahias; Sandip Hindocha; Wasim S. Khan; Ali Juma
Acute compartment syndrome (ACS) of the limb refers to a constellation of symptoms, which occur following a rise in the pressure inside a limb muscle compartment. A failure or delay in recognising ACS almost invariably results in adverse outcomes for patients. Unrecognised ACS can leave patients with nonviable limbs requiring amputation and can also be life–threatening. Several clinical features indicate ACS. Where diagnosis is unclear there are several techniques for measuring intracompartmental pressure described in this review. As early diagnosis and fasciotomy are known to be the best determinants of good outcomes, it is important that surgeons are aware of the features that make this diagnosis likely. This clinical review discusses current knowledge on the relevant clinical anatomy, aetiology, pathophysiology, risk factors, clinical features, diagnostic procedures and management of an acute presentation of compartment syndrome.
Current Stem Cell Research & Therapy | 2012
Nigel Tapiwa Mabvuure; Sandip Hindocha; Wasim S. Khan
Cartilage tissue engineering is concerned with developing in vitro cartilage implants that closely match the properties of native cartilage, for eventual implantation to replace damaged cartilage. The three components to cartilage tissue engineering are cell source, such as in vitro expanded autologous chondrocytes or mesenchymal progenitor cells, a scaffold onto which the cells are seeded and a bioreactor which attempts to recreate the in vivo physicochemical conditions in which cartilage develops. Although much progress has been made towards the goal of developing clinically useful cartilage constructs, current constructs have inferior physicochemical properties than native cartilage. One of the reasons for this is the neglect of mechanical forces in cartilage culture. Bioreactors have been defined as devices in which biological or biochemical processes can be re-enacted under controlled conditions e.g. pH, temperature, nutrient supply, O2 tension and waste removal. The purpose of this review is to detail the role of bioreactors in the engineering of cartilage, including a discussion of bioreactor designs, current state of the art and future perspectives.
Current Stem Cell Research & Therapy | 2012
Pouya Mafi; Sandip Hindocha; Rafi Mafi; Wasim S. Khan
The term tissue engineering is the technology that combines cells, engineering and biological/synthetic material in order to repair, replace or regenerate biological tissues such as bone, muscle, tendons and cartilage. The major human applications of tissue engineering are: skin, bone, cartilage, corneas, blood vessels, left mainstem bronchus and urinary structures. In this systematic review several criteria were identified as the most desirable characteristics of an ideal scaffold. These state that an ideal scaffolds needs to be biodegradable, possess mechanical strength, be highly porous, biocompatible, non-cytotoxic, non antigentic, stuitable for cell attachment, proliferation and differentiation, flexible and elastic, three dimensional, osteoconductive and support the transport of nutrients and metabolic waste. Subsequently, studies reporting on the various advantages and disadvantages of using collagen based scaffolds in musculoskeletal and cartilage tissue engineering were identified. The purpose of this review is to 1) provide a list of ideal characteristics of a scaffold as identified in the literature 2) identify different types of biological protein-based collagen scaffolds used in musculoskeletal and cartilage tissue engineering 3) assess how many of the criteria each scaffold type meets 4) weigh different scaffolds against each other according to their relative properties and shortcomings. The rationale behind this approach is that the ideal scaffold material has not yet been identified. Hence, this review will define how many of the identified ideal characteristics are fulfilled by natural collagen-based scaffolds and address the shortcomings of its use as found in the literature.
The Open Orthopaedics Journal | 2012
Dn Haughton; D Jordan; Marco Malahias; Sandip Hindocha; Wasim S. Khan
The hand is essential in humans for physical manipulation of their surrounding environment. Allowing the ability to grasp, and differentiated from other animals by an opposing thumb, the main functions include both fine and gross motor skills as well as being a key tool for sensing and understanding the immediate surroundings of their owner. Hand fractures are the most common fractures presenting at both accident and emergency and within orthopaedic clinics. Appropriate evaluation at first presentation, as well as during their management, can significantly prevent both morbidity and disability to a patient. These decisions are dependant on a wide range of factors including age, hand dominance, occupation and co-morbidities. A fracture is best described as a soft tissue injury with an associated bony injury. Despite this being the case, this paper intends to deal mainly with the bone injury and aims to discuss both the timing, as well as the methods available, of hand fracture management.
The Open Orthopaedics Journal | 2014
Griffin M.F; Marco Malahias; Sandip Hindocha; Wasim S. Khan
Peripheral Nerve Injuries are one of the most common causes of hand dysfunction caused by upper limb trauma but still current management has remained suboptimal. This review aims to explain the traditional view of pathophysiology of nerve repair and also describe why surgical management is still inadequate in using the new biological research that has documented the changes that occur after the nerve injury, which, could cause suboptimal clinical outcomes. Subsequently presentation and diagnosis will be described for peripheral nerve injuries. When traditional surgical repair using end-to-end anastomosis is not adequate nerve conduits are required with the gold standard being the autologous nerve. Due to associated donor site morbidity and poor functional outcome documented with autologous nerve repair several new advancements for alternatives to bridge the gap are being investigated. We will summarise the new and future advancements of non-biological and biological replacements as well as gene therapy, which are being considered as the alternatives for peripheral nerve repair.
The Open Orthopaedics Journal | 2012
Mafi P; Sandip Hindocha; M Dhital; M Saleh
Concepts of neuronal damage and repair date back to ancient times. The research in this topic has been growing ever since and numerous nerve repair techniques have evolved throughout the years. Due to our greater understanding of nerve injuries and repair we now distinguish between central and peripheral nervous system. In this review, we have chosen to concentrate on peripheral nerve injuries and in particular those involving the hand. There are no reviews bringing together and summarizing the latest research evidence concerning the most up-to-date techniques used to improve hand function. Therefore, by identifying and evaluating all the published literature in this field, we have summarized all the available information about the advances in peripheral nerve techniques used to improve hand function. The most important ones are the use of resorbable poly[(R)-3-hydroxybutyrate] (PHB), epineural end-to-end suturing, graft repair, nerve transfer, side to side neurorrhaphy and end to side neurorrhaphy between median, radial and ulnar nerves, nerve transplant, nerve repair, external neurolysis and epineural sutures, adjacent neurotization without nerve suturing, Agee endoscopic operation, tourniquet induced anesthesia, toe transfer and meticulous intrinsic repair, free auto nerve grafting, use of distal based neurocutaneous flaps and tubulization. At the same time we found that the patients age, tension of repair, time of repair, level of injury and scar formation following surgery affect the prognosis. Despite the thorough findings of this systematic review we suggest that further research in this field is needed.Concepts of neuronal damage and repair date back to ancient times. The research in this topic has been growing ever since and numerous nerve repair techniques have evolved throughout the years. Due to our greater understanding of nerve injuries and repair we now distinguish between central and peripheral nervous system. In this review, we have chosen to concentrate on peripheral nerve injuries and in particular those involving the hand. There are no reviews bringing together and summarizing the latest research evidence concerning the most up-to-date techniques used to improve hand function. Therefore, by identifying and evaluating all the published literature in this field, we have summarized all the available information about the advances in peripheral nerve techniques used to improve hand function. The most important ones are the use of resorbable poly[(R)-3-hydroxybutyrate] (PHB), epineural end-to-end suturing, graft repair, nerve transfer, side to side neurorrhaphy and end to side neurorrhaphy between median, radial and ulnar nerves, nerve transplant, nerve repair, external neurolysis and epineural sutures, adjacent neurotization without nerve suturing, Agee endoscopic operation, tourniquet induced anesthesia, toe transfer and meticulous intrinsic repair, free auto nerve grafting, use of distal based neurocutaneous flaps and tubulization. At the same time we found that the patient’s age, tension of repair, time of repair, level of injury and scar formation following surgery affect the prognosis. Despite the thorough findings of this systematic review we suggest that further research in this field is needed.