Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wasim S. Khan is active.

Publication


Featured researches published by Wasim S. Khan.


Arthritis Research & Therapy | 2007

Hypoxic conditions increase hypoxia-inducible transcription factor 2α and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients

Wasim S. Khan; Adetola B Adesida; Timothy E. Hardingham

Stem cells derived from the infrapatellar fat pad (IPFP) are a potential source of stem cells for the repair of articular cartilage defects. Hypoxia has been shown to improve chondrogenesis in adult stem cells. In this study we investigated the effects of hypoxia on gene expression changes and chondrogenesis in stem cells from the IPFP removed from elderly patients with osteoarthritis at total knee replacement. Adherent colony-forming cells were isolated and cultured from the IPFP from total knee replacement. The cells at passage 2 were characterised for stem cell surface epitopes, and then cultured for 14 days as cell aggregates in chondrogenic medium under normoxic (20% oxygen) or hypoxic (5% oxygen) conditions. Gene expression analysis, DNA and glycosoaminoglycan assays and immunohistochemical staining were determined to assess chondrogenesis. IPFP-derived adherent colony-forming cells stained strongly for markers of adult mesenchymal stem cells, including CD44, CD90 and CD105, and they were negative for the haematopoietic cell marker CD34 and for the neural and myogenic cell marker CD56. Cell aggregates of IPFP cells showed a chondrogenic response. In hypoxic conditions there was increased matrix accumulation of proteoglycan but less cell proliferation, which resulted in 3.5-fold more glycosoaminoglycan per DNA after 14 days of culture. In hypoxia there was increased expression of hypoxia-inducible transcription factor (HIF)2α and not HIF1α, and the expression of key transcription factors SOX5, SOX6 and SOX9, and that of aggrecan, versican and collagens II, IX, X and XI, was also increased. These results show that cells with stem cell characteristics were isolated from the IPFP of elderly patients with osteoarthritis and that their response to chondrogenic culture was enhanced by lowered oxygen tension, which upregulated HIF2α and increased the synthesis and assembly of matrix during chondrogenesis. This has important implications for tissue engineering applications of cells derived from the IPFP.


The Open Orthopaedics Journal | 2012

Carpal Tunnel Syndrome: A Review of the Recent Literature

I Ibrahim; Wasim S. Khan; N. J. Goddard; P Smitham

Diyabet; goz, bobrek ve kalp gibi organ ve sistemlere kalici hasar verebilen bir hastaliktir. Baziromatolojik durumlar diyabet hastalarinda daha sik gorulmekte ve yasam kalitesini olumsuzetkilemektedirler. Diyabetik keiroartropati, karpal tunel sendromu, Dupuytren kontrakturu veCharcot artropatisi bunlardan bazilaridir. Bu romatolojik sorunlarin buyuk bir kisminin glisemikkontrolun saglanmasiyla durdurulabildigi gosterilmistir. Bazi durumlarda ise cerrahi mudahalegerekir. Hekimlerin gorevi; hastanin yasamini olumsuz etkileyen bu sorunlari taniyabilmek vehastayi dogru tedavi secenegine yonlendirmektirCarpal Tunnel Syndrome (CTS) remains a puzzling and disabling condition present in 3.8% of the general population. CTS is the most well-known and frequent form of median nerve entrapment, and accounts for 90% of all entrapment neuropathies. This review aims to provide an overview of this common condition, with an emphasis on the pathophysiology involved in CTS. The clinical presentation and risk factors associated with CTS are discussed in this paper. Also, the various methods of diagnosis are explored; including nerve conduction studies, ultrasound, and magnetic resonance imaging.


The Open Orthopaedics Journal | 2011

Sources of Adult Mesenchymal Stem Cells Applicable for Musculoskeletal Applications - A Systematic Review of the Literature

Reza Mafi; Sandip Hindocha; Pouya Mafi; Michelle Griffin; Wasim S. Khan

Mesenchymal stem cells (MSCs) were first discovered by Friedenstein and his colleagues in 1976 from bone marrow. The unique property of these cells was their potential to develop into fibroblastic colony forming cells. Since Friedenstein’s discovery of these cells the interest in adult MSCs has been progressively growing. Nowadays MSCs are defined as undeveloped biological cells capable of proliferation, self renewal and regenerating tissues. All these properties of MSCs have been discovered in the past 35 years. MSCs can play a crucial role in tissue engineering, organogenesis, gene therapy, transplants as well as tissue injuries. These cells were mainly extracted from bone marrow but there have been additional sources for MSCs discovered in the laboratories including: muscle, dermis, trabecular bone, adipose tissue, periosteum, pericyte, blood, synovial membrane and so forth. The discovery of the alternative sources of MSCs helps widen the application of these cells in different areas of medicine. By way of illustration, they can be used in various therapeutic purposes such as tissue regeneration and repair in musculoskeletal diseases including osteonecrosis of femoral head, stimulating growth in children with osteogenesis imperfecta, disc regeneration, osteoarthritis and duchenne muscular dystrophy. In order to fully comprehend the characteristics and potential of MSCs future studies in this field are essential.


Arthritis Research & Therapy | 2008

Human infrapatellar fat pad-derived stem cells express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2.

Wasim S. Khan; Simon R. Tew; Adetola B Adesida; Timothy E. Hardingham

IntroductionInfrapatellar fat pad (IPFP) is a possible source of stem cells for the repair of articular cartilage defects. In this study, adherent proliferative cells were isolated from digests of IPFP tissue. The effects of the expansion of these cells in fibroblast growth factor-2 (FGF-2) were tested on their proliferation, characterisation, and chondrogenic potential.MethodsIPFP tissue was obtained from six patients undergoing total knee replacement, and sections were stained with 3G5, alpha smooth muscle actin, and von Willebrand factor to identify different cell types in the vasculature. Cells were isolated from IPFP, and both mixed populations and clonal lines derived from them were characterised for cell surface epitopes, including 3G5. Cells were expanded with and without FGF-2 and were tested for chondrogenic differentiation in cell aggregate cultures.Results3G5-positive cells were present in perivascular regions in tissue sections of the IPFP, and proliferative adherent cells isolated from the IPFP were also 3G5-positive. However, 3G5 expression was on only a small proportion of cells in all populations and at all passages, including the clonally expanded cells. The cells showed cell surface epitope expression similar to adult stem cells. They stained strongly for CD13, CD29, CD44, CD90, and CD105 and were negative for CD34 and CD56 but were also negative for LNGFR (low-affinity nerve growth factor receptor) and STRO1. The IPFP-derived cells showed chondrogenic differentiation in cell aggregate cultures, and prior expansion with FGF-2 enhanced chondrogenesis. Expansion in FGF-2 resulted in greater downregulation of many cartilage-associated genes, but on subsequent chondrogenic differentiation, they showed stronger upregulation of these genes and this resulted in greater matrix production per cell.ConclusionThese results show that these cells express mesenchymal stem cell markers, but further work is needed to determine the true origin of these cells. These results suggest that the expansion of these cells with FGF-2 has important consequences for facilitating their chondrogenic differentiation.


Knee | 2010

The potential of stem cells in the treatment of knee cartilage defects

Wasim S. Khan; D.S. Johnson; Timothy E. Hardingham

Cartilage is frequently damaged but only shows a limited capacity for repair. There are a number of treatment strategies currently available for the repair of articular cartilage defects including abrasion chondroplasty, subchondral drilling, microfracture and mosaicplasty but these show variable results. For the younger patients, there is great interest in the potential of cell-based strategies to provide a biological replacement of damaged cartilage using autologous chondrocytes. The results of clinical studies using these cell-based techniques do not conclusively show improvement over conventional techniques. These techniques also do not consistently result in the formation of the desired hyaline cartilage rather than fibrocartilage. Mesenchymal stem cells present a promising cell source for cartilage repair. Mesenchymal stem cells have been isolated from a number of adult tissues including the bone marrow and the synovial fat pad. These cells have the ability to proliferate in culture and differentiate down different pathways including the chondrogenic pathway. In the first instance, differentiated stem cells can be used for the repair of localised cartilage defects by producing hyaline cartilage. In the future, this strategy has the potential to be extended to treat more generalised cartilage defects, especially as the cell source is not a limiting factor. The use of cell-based therapies also allows the versatility of using scaffolds and growth factors, with recombinant proteins or gene therapy. A number of challenges however still need to be overcome including further work on identifying the optimal source of stem cells, along with refining the conditions that enhance expansion and chondrogenesis.


Injury-international Journal of The Care of The Injured | 2009

The epitope characterisation and the osteogenic differentiation potential of human fat pad-derived stem cells is maintained with ageing in later life

Wasim S. Khan; Adetola B Adesida; Simon R. Tew; Jg Andrew; Timothy E. Hardingham

Some clinical settings are deficient in osteogenic progenitors, e.g. atrophic nonunited fractures, large bone defects, and regions of scarring and osteonecrosis. These benefit from the additional use of bone marrow-derived mesenchymal stem cells, but these cells exhibit an age-related decline in lifespan, proliferation and osteogenic potential. Therapeutic approaches for the repair of bone could be optimised by the identification of a stem cell source that does not show age-related changes. Fat pad-derived stem cells are capable of osteogenesis, but a detailed study of the effect of ageing on their epitope profile and osteogenic potential has so far not been performed. Fat pad-derived cells were isolated from 2 groups of 5 patients with a mean age of 57 years (S.D. 3 years) and 86 years (S.D. 3 years). The proliferation, epitope profile and osteogenic differentiation potential of cells from the 2 groups were compared. Cells isolated from the fat pad of both groups showed similar proliferation rates and exhibited a cell surface epitope profile similar but not identical to that of bone marrow-derived stem cells. The cells from both groups cultured in osteogenic medium exhibited osteogenesis as shown by a significant upregulation of alkaline phosphatase and osteocalcin genes, and significantly greater alkaline phosphatase enzyme activity compared to cells cultured in the control medium. The cells cultured in the osteogenic medium also showed greater calcium phosphate deposition on alizarin red staining. There was no significant difference between the osteogenic potential of the two age groups for any of the parameters studied. The fat pad is a consistent and homogenous source of stem cells that exhibits osteogenic differentiation potential with no evidence of any decline with ageing in later life. This has many potential therapeutic tissue engineering applications for the repair of bone defects in an increasingly ageing population.


Journal of Orthopaedic Research | 2010

Bone Marrow-Derived Mesenchymal Stem Cells Express the Pericyte Marker 3G5 in Culture and Show Enhanced Chondrogenesis in Hypoxic Conditions

Wasim S. Khan; Adetola B Adesida; Simon R. Tew; Emma T Lowe; Timothy E. Hardingham

Bone marrow‐derived mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. Hypoxia has been shown to improve chondrogenesis in some cells. In this study, bone marrow‐derived stem cells were characterized and the effects of hypoxia on chondrogenesis investigated. Adherent bone marrow colony‐forming cells were characterized for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium under normoxic (20% oxygen) or hypoxic (5% oxygen) conditions. The cells stained strongly for markers of adult mesenchymal stem cells, and a high number of cells were also positive for the pericyte marker 3G5. The cells showed a chondrogenic response in cell aggregate cultures and, in lowered oxygen, there was increased matrix accumulation of proteoglycan, but less cell proliferation. In hypoxia, there was increased expression of key transcription factor SOX6, and of collagens II and XI, and aggrecan. Pericytes are a candidate stem cell in many tissue, and our results show that bone marrow‐derived mesenchymal stem cells express the pericyte marker 3G5. The response to chondrogenic culture in these cells was enhanced by lowered oxygen tension. This has important implications for tissue engineering applications of bone marrow‐derived stem cells.


Stem Cells International | 2012

Optimising human mesenchymal stem cell numbers for clinical application: a literature review.

Emma Fossett; Wasim S. Khan

Adult mesenchymal stem cells (MSCs) are being investigated further for their use in stem cell therapies. However, as they are found in very low numbers in adult tissue, expansion in vitro is required to produce desired MSC numbers for clinical application. The need for effective cell-based therapies is increasing due to a rise in the ageing population, increasing the prevalence of musculoskeletal disorders. This review investigates how factors, age and gender of donor, as well as seeding density can affect MSC expansion. Age and gender of donor have received mixed results from studies, whereas seeding density studies have produced consistent results for numerous MSC sources, favouring lower seeding densities. Further research is required to reduce the risk of infection, loss of cell characterisation in cell culture, and making cell-based therapies more cost effective through creating rapid expansion of MSCs regardless of patient factors.


Arthritis Research & Therapy | 2006

The matrix-forming phenotype of cultured human meniscus cells is enhanced after culture with fibroblast growth factor 2 and is further stimulated by hypoxia

Adetola B Adesida; Lisa M Grady; Wasim S. Khan; Timothy E. Hardingham

Human meniscus cells have a predominantly fibrogenic pattern of gene expression, but like chondrocytes they proliferate in monolayer culture and lose the expression of type II collagen. We have investigated the potential of human meniscus cells, which were expanded with or without fibroblast growth factor 2 (FGF2), to produce matrix in three-dimensional cell aggregate cultures with a chondrogenic medium at low (5%) and normal (20%) oxygen tension. The presence of FGF2 during the expansion of meniscus cells enhanced the re-expression of type II collagen 200-fold in subsequent three-dimensional cell aggregate cultures. This was increased further (400-fold) by culture in 5% oxygen. Cell aggregates of FGF2-expanded meniscus cells accumulated more proteoglycan (total glycosaminoglycan) over 14 days and deposited a collagen II-rich matrix. The gene expression of matrix-associated proteoglycans (biglycan and fibromodulin) was also increased by FGF2 and hypoxia. Meniscus cells after expansion in monolayer can therefore respond to chondrogenic signals, and this is enhanced by FGF2 during expansion and low oxygen tension during aggregate cultures.


Archives of Orthopaedic and Trauma Surgery | 2004

Repair of distal biceps tendon rupture with the Biotenodesis screw.

Wasim S. Khan; M. Agarwal; L. Funk

BackgroundDistal biceps tendon ruptures are uncommon injuries with only around 300 cases reported in the literature. Current management tends to favour anatomical reinsertion of the tendon into the radial tuberosity, especially in young and active individuals. These injuries are commonly repaired using either a single anterior incision with suture anchors or the Boyd-Anderson dual incision technique.Case reportWe report the use of a bioabsorbable interference screw for the repair of distal biceps tendon rupture using a minimal incision technique. In this technique the avulsed tendon and a bioabsorbable screw are secured in a drill hole on the radial tuberosity using whip stitch and fibre wire sutures according to Biotenodesis system guidelines.ConclusionThe technique described requires minimal volar dissection that is associated with a reduced number of synostosis and posterior interosseous nerve injuries. The bioabsorbable interference screw has all the advantages of being biodegradable and has been shown to have greater pullout strength than suture anchors. It is also a reasonable alternative to titanium screws in terms of primary fixation strength. The strong fixation provided allows early active motion and return to previous activities as seen in our case.

Collaboration


Dive into the Wasim S. Khan's collaboration.

Top Co-Authors

Avatar

Atif Malik

Royal National Orthopaedic Hospital

View shared research outputs
Top Co-Authors

Avatar

Timothy E. Hardingham

Wellcome Trust Centre for Cell-Matrix Research

View shared research outputs
Top Co-Authors

Avatar

Umile Giuseppe Longo

Università Campus Bio-Medico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emeka Oragui

West Middlesex University Hospital

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Denaro

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Behrooz Haddad

Royal National Orthopaedic Hospital

View shared research outputs
Top Co-Authors

Avatar

Ps Pastides

Royal National Orthopaedic Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge