Sandra Borkowski
Free University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Borkowski.
Clinical Cancer Research | 2005
Dietmar Berndorff; Sandra Borkowski; Stephanie Sieger; Axel Rother; Matthias Friebe; Francesca Viti; Christoph Stephan Hilger; John E. Cyr; Ludger Dinkelborg
Purpose: The expression of extra domain B (ED-B) fibronectin is always associated with angiogenic processes and can be exclusively observed in tissues undergoing growth and/or extensive remodeling. Due to this selective expression, ED-B fibronectin is an interesting target for radioimmunotherapy of malignant diseases. The aim of this study was to identify the most appropriate ED-B-targeting radioimmunoconjugate for the therapy of solid tumors. Experimental Design: Three ED-B fibronectin-binding human antibody formats of L19 were investigated: dimeric single-chain Fv (∼50 kDa), “small immunoprotein” (SIP, ∼80 kDa), and immunoglobulin G1 (IgG1, ∼150 kDa). These L19 derivatives were either labeled with I-125 or with In-111 (using MX-diethylenetriaminepentaacetic acid, MX-DTPA). Pharmacokinetics and tumor accumulation of the radiolabeled immunoconjugates were investigated in F9 (murine teratocarcinoma) tumor-bearing mice. Subsequently, dosimetry for the corresponding therapeutic isotopes I-13-1 and Y-90 was done. After testing the myelotoxicity of I-131-L19-SIP and I-131-L19-IgG1 in non-tumor-bearing mice, the therapeutic efficacy of these iodinated antibody formats was finally investigated in F9 tumor-bearing mice. Results: The most favorable therapeutic index was found for I-131-L19-SIP followed by I-131-L19-IgG1. The therapeutic index of all In-111-labeled derivatives was significantly inferior. Considering the bone marrow as the dose-limiting organ, it was calculated that activities of 74 MBq I-131-L19-SIP and 25 MBq I-131-L19-IgG1 could be injected per mouse without causing severe myelotoxicity. The best therapeutic efficacy was observed using I-131-L19-SIP, resulting in significant tumor growth delay and prolonged survival after a single injection. Conclusion: Compared with other L19-based radioimmunoconjugates, I-131-L19-SIP is characterized by superior antitumor efficacy and toxicity profile in the F9 teratocarcinoma animal model. These results indicate that ED-B fibronectin-targeted radioimmunotherapy using I-131-L19-SIP has potential to be applied to treatment of solid cancers.
Bioconjugate Chemistry | 2008
Aileen Höhne; Linjing Mu; Michael Honer; P. August Schubiger; Simon M. Ametamey; Keith Graham; Timo Stellfeld; Sandra Borkowski; Dietmar Berndorff; Ulrich Klar; Ulrike Voigtmann; John E. Cyr; Matthias Friebe; Ludger Dinkelborg; Ananth Srinivasan
The gastrin-releasing peptide receptor (GRPr) is overexpressed on various human tumors. The goal of our study was the synthesis of new 18F-labeled bombesin analogues for the PET imaging of GRPr expression in prostate tumor using a silicon-based one-step n. c. a. radiolabeling method. The silicon-containing building blocks were efficiently coupled to the N-terminus of the peptides via solid-phase synthesis. Radiolabeling of the obtained peptide precursors proceeded smoothly under acidic conditions (34-85% conversion). Using the di-tert-butyl silyl building block as labeling moiety, products containing a hydrolytically stable 18F-label were obtained. In in vitro receptor binding experiments 2-(4-(di-tert-butylfluorosilyl)phenyl)acetyl-Arg-Ava-Gln-Trp-Ala-Val-NMeGly-His-Sta-Leu-NH 2 ( 4b, IC50 = 22.9 nM) displayed a 12-fold higher binding affinity than 2-(4-(di-tert-butylfluorosilyl)phenyl)acetyl-Arg-Ava-Gln-Trp-Ala-Val-Gly-His(3Me)-Sta-Leu-NH2 ( 3b, IC50 = 276.6 nM), and 4b was therefore chosen for further evaluation. In vitro and ex vivo metabolite studies of [18F]4b showed no significant degradation. In biodistribution experiments, tumor uptake of [18F]4b was low and unspecific, whereas the GRPr-rich pancreas revealed a high and specific accumulation of the radiotracer. This study demonstrates the applicability of our silicon-based one-step n. c. a. radiolabeling method for the synthesis of new 18F-labeled bombesin derivatives. This innovative approach represents a general, straightforward access to radiolabeled peptides as PET imaging probes.
Bioconjugate Chemistry | 2009
Jessica Becaud; Linjing Mu; Mylène Karramkam; Pius A. Schubiger; Simon M. Ametamey; Keith Graham; Timo Stellfeld; Lutz Lehmann; Sandra Borkowski; Dietmar Berndorff; Ludger Dinkelborg; Ananth Srinivasan; Rene Smits; Beate Koksch
Methods for the radiolabeling molecules of interest with [18F]-fluoride need to be rapid, convenient, and efficient. Numerous [18F]-labeled prosthetic groups, e.g., N-succinimidyl 4 [18F]-fluorobenzoate ([18F]-SFB), 4-azidophenacyl-[18F]-fluoride ([18F]-APF), and 1-(3-(2-[18F]fluoropyridin-3-yloxy)propyl)pyrrole-2,5-dione ([18F]-FpyMe), for conjugating to biomolecules have been developed. As the synthesis of these prosthetic groups usually requires multistep procedures, there is still a need for direct methods for the nucleophilic [18F]-fluorination of biomolecules. We report here on the development of a procedure based on the trimethylammonium (TMA) leaving group attached to an aromatic ring and activated with different electron-withdrawing groups (EWGs). A series of model compounds containing different electron-withdrawing substituents, a trimethylammonium leaving group, and carboxylic functionality for subsequent coupling to peptides were designed and synthesized. The optimal model compound, 2-cyano-4-(methoxycarbonyl)-N,N,N-trimethylbenzenaminium trifluoromethanesulfonate, was converted to carboxylic acid and coupled to peptides. The results of the one-step [18F]-fluorination of tetrapeptides and bombesin peptides show that the direct 18F-labeling of peptides is feasible under mild conditions and in good radiochemical yields.
The Journal of Nuclear Medicine | 2011
Michael Honer; Linjing Mu; Timo Stellfeld; Keith Graham; Miljen Martić; Cindy R. Fischer; Lutz Lehmann; Pius A. Schubiger; Simon M. Ametamey; Ludger Dinkelborg; Ananth Srinivasan; Sandra Borkowski
Bombesin is a peptide exhibiting high affinity for the gastrin-releasing peptide receptor (GRPr), which is highly overexpressed on prostate cancer cells. In the present study, we developed an 18F-labeled bombesin analog, 18F-BAY 86-4367, which is currently being clinically tested for use in PET of prostate cancer. Methods: In vitro pharmacologic studies were performed to characterize the nonradioactive (19F) standard of the bombesin analog for binding affinity and selectivity for GRPr. The stability of 18F-BAY 86-4367 was determined in murine and human plasma. In vivo, the tumor-targeting potential and pharmacokinetic profile of the 18F tracer were analyzed with biodistribution experiments and PET studies of prostate tumor–bearing mice. Results: The nonradioactive (19F) standard of the bombesin analog showed subnanomolar and GRPr-selective binding affinity. The stability of the tracer in murine and human plasma was found to be high. In 2 prostate cancer xenograft models (PC-3 and LNCaP), 18F-BAY 86-4367 showed more specific and effective GRPr-based targeting in vivo than the benchmark radiotracers 18F-fluoroethylcholine and 18F-FDG. In addition, rapid tumor targeting and fast renal excretion (∼70%) and hepatobiliary excretion (∼10%) were identified in both xenograft models. Furthermore, PET studies provided clear and specific visualization of PC-3 tumors in mice. Conclusion: Favorable preclinical data showing specific and effective tumor targeting by 18F-BAY 86-4367 suggest that a clinical trial be undertaken to test its diagnostic utility in PET for prostate carcinoma patients.
Bioconjugate Chemistry | 2010
Linjing Mu; Michael Honer; Jessica Becaud; Miljen Martić; Pius A. Schubiger; Simon M. Ametamey; Timo Stellfeld; Keith Graham; Sandra Borkowski; Lutz Lehmann; Ludger Dinkelborg; Ananth Srinivasan
The gastrin-releasing peptide receptor (GRPR) is overexpressed on a number of human tumors and has been targeted with radiolabeled bombesin analogues for the diagnosis and therapy of these cancers. Seven bombesin analogues containing various linkers and peptide sequences were designed, synthesized, radiolabeled with (18)F, and characterized in vitro and in vivo as potential PET imaging agents. Binding studies displayed nanomolar binding affinities toward human GRPR for all synthesized bombesin analogues. Two high-affinity peptide candidates 6b (K(i) = 0.7 nM) and 7b (K(i) = 0.1 nM) were chosen for further in vivo evaluation. Both tracers revealed specific uptake in GRPR-expressing PC-3 tumors and the pancreas. Compared to [(18)F]6b, compound [(18)F]7b was characterized by superior tumor uptake, higher specificity of tracer uptake, and more favorable tumor-to-nontarget ratios. In vivo PET imaging allowed for the visualization of PC-3 tumor in nude mice suggesting that [(18)F]7b is a promising PET tracer candidate for the diagnosis of GRPR-positive tumors in humans.
Clinical Cancer Research | 2006
Dieter Moosmayer; Dietmar Berndorff; Chien-Hsing Chang; Robert M. Sharkey; Axel Rother; Sandra Borkowski; Edmund A. Rossi; William J. McBride; Thomas M. Cardillo; David M. Goldenberg; Ludger Dinkelborg
Purpose: Extra domain B (ED-B) fibronectin is a specific tumor matrix marker for targeting angiogenesis in solid tumors. In this study, the radiotherapeutic potential of the directly radioiodinated divalent anti-ED-B antibody fragment, L19 small immunoprotein (L19-SIP; 75,000 Da), was compared with a pretargeting approach using the bispecific antibody AP39xm679 (bsMAb; 75,000 Da). Experimental Design: The bsMAb was prepared by coupling an anti-ED-B single-chain Fv (AP39) to the Fab′ of the murine antibody m679, which binds to the small peptidic hapten histamine-succinyl-glycine (HSG). As an effector molecule for the pretargeting approach, the 111In-labeled HSG-DOTA complex was injected 25 or 41 hours after the bsMAb. The kinetics of both the iodinated bsMAb and the pretargeted 111In-labeled HSG hapten were investigated in mice bearing human glioblastoma xenografts (U251) and compared with the kinetics and tumor accumulation of radioiodinated L19-SIP. 111In and 125I were used as surrogate marker for the therapeutic radioisotopes 90Y/177Lu and 131I, respectively. Results: Tumor uptake of the pretargeted 111In-labeled peptide was significantly higher than 125I-L19-SIP over 7 days. At the calculated maximally tolerated dose for each agent (with the kidney being the dose-limiting organ for pretargeting and the bone marrow for direct targeting), a mouse tumor dose of 146 Gy could be given by pretargeting versus 45 Gy delivered by the direct approach. Conclusions: These data suggest that pretargeting of ED-B with AP39xm679 and subsequent injection of the 90Y-hapten-peptide would improve the therapeutic efficacy in solid tumors by >3-fold compared with directly radiolabeled 131I-L19-SIP.
The Journal of Nuclear Medicine | 2006
Brian Hicke; Andrew Stephens; Ty A. Gould; Ying-Fon Chang; Cynthia K. Lynott; James Heil; Sandra Borkowski; Christoph-Stephan Hilger; Gary Cook; Stephen Warren; Paul Schmidt
Nucleic Acids Research | 2004
Kathrin Schmidt; Sandra Borkowski; Jens Kurreck; Andrew Stephens; Rolf Bald; Maren Hecht; Matthias Friebe; Ludger Dinkelborg; Volker A. Erdmann
The Journal of Nuclear Medicine | 2006
Dietmar Berndorff; Sandra Borkowski; Dieter Moosmayer; Francesca Viti; Beate Müller-Tiemann; Stephanie Sieger; Matthias Friebe; Christoph Stephan Hilger; Luciano Zardi; Dario Neri; Ludger Dinkelborg
Society of Nuclear Medicine Annual Meeting Abstracts | 2012
Sandra Borkowski; Olaf Doehr; Christina Hultsch; Peter Weinig; Bernd Elger; Christa Hegele-Hartung; Keith Graham; Ludger Dinkelborg