Sandra Esparon
Burnet Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Esparon.
Journal of Immunology | 2011
Paul A. Ramsland; William Farrugia; Tessa Margaret Bradford; Caroline Tan Sardjono; Sandra Esparon; Halina M. Trist; Maree S. Powell; Peck Szee Tan; A.C Cendron; Bruce D. Wines; Andrew M. Scott; P.M. Hogarth
The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. FcγRIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of FcγRIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of FcγRIIa (FcγRIIa-HR) and the Fc region of a humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence FcγRIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for FcγRIIa (IV.3), FcγRIIb (X63-21), and a pan FcγRII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of FcγRIIa and FcγRIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of FcγRIIa-HR binds Ag–Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly.
European Journal of Immunology | 2008
Kuo-Ching Sheng; Martha Kalkanidis; Dodie S. Pouniotis; Sandra Esparon; Choon Kit Tang; Vasso Apostolopoulos; Geoffrey A. Pietersz
Antigen mannosylation has been shown to be an effective approach to potentiate antigen immunogenicity, due to the enhanced antigen uptake and presentation by APC. To overcome disadvantages associated with conventional methods used to mannosylate antigens, we have developed a novel mannose‐based antigen delivery system that utilizes a polyamidoamine (PAMAM) dendrimer. It is demonstrated that mannosylated dendrimer ovalbumin (MDO) is a potent immune inducer. With a strong binding avidity to DC, MDO potently induced OVA‐specific T cell response in vitro. It was found that the immunogenicity of MDO was due not only to enhanced antigen presentation, but also to induction of DC maturation. Mice immunized with MDO generated strong OVA‐specific CD4+/CD8+ T cell and antibody responses. MDO also targeted lymph node DC to cross‐present OVA, leading to OTI CD8+ T cell proliferation. Moreover, upon challenge with B16‐OVA tumor cells, tumors in mice pre‐immunized with MDO either did not grow or displayed a much more delayed onset, and had slower kinetics of growth than those of OVA‐immunized mice. This mannose‐based antigen delivery system was applied here for the first time to the immunization study. With several advantages and exceptional adjuvanticity, we propose mannosylated dendrimer as a potential vaccine carrier.
Immunology and Cell Biology | 2009
Geoffrey A. Pietersz; Patricia L. Mottram; Nicholas C. van de Velde; Caroline Tan Sardjono; Sandra Esparon; Paul A. Ramsland; Gerard Peter Moloney; Jonathan B. Baell; Tom McCarthy; Barry Ross Matthews; Maree S. Powell; P. Mark Hogarth
The interaction of immune complexes with the human Fc receptor, FcγRIIa, initiates the release of inflammatory mediators and is implicated in the pathogenesis of human autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus, so this FcR is a potential target for therapy. We have used the three‐dimensional structure of an FcγRIIa dimer to design small molecule inhibitors, modeled on a distinct groove and pocket created by receptor dimerization, adjacent to the ligand‐binding sites. These small chemical entities (SCEs) blocked immune complex‐induced platelet activation and aggregation and tumor necrosis factor secretion from macrophages in a human cell line and transgenic mouse macrophages. The SCE appeared specific for FcγRIIa, as they inhibited only immune complex‐induced responses and had no effect on responses to stimuli unrelated to FcR, for example platelet stimulation with arachidonic acid. In vivo testing of the SCE in FcγRIIa transgenic mice showed that they inhibited the development and stopped the progression of collagen‐induced arthritis (CIA). The SCEs were more potent than methotrexate and anti‐CD3 in sustained suppression of CIA. Thus, in vitro and in vivo activity of these SCE FcγRIIa receptor antagonists demonstrated their potential as anti‐inflammatory agents for autoimmune diseases involving immune complexes.
Vaccine | 2008
Choon Kit Tang; Kuo-Ching Sheng; Dodie S. Pouniotis; Sandra Esparon; Hye-Youn Son; Chul Woo Kim; Geoffrey A. Pietersz; Vasso Apostolopoulos
DNA immunization is an attractive form of vaccination, which has shown promising results only in small animal models. There is a need to develop efficient gene delivery systems. We previously demonstrated that oxidized (OM) and reduced mannan (RM) complexed to ovalbumin DNA via poly-l-lysine (PLL), were able to generate potent immune responses in mice. Herein, we further investigated the suitability of OMPLL and RMPLL as carriers for mucin 1 (MUC1) DNA vaccination for cancer immunotherapy. Studies presented here showed that immune responses in C57BL/6 mice induced by OMPLL-MUC1 DNA and RMPLL-MUC1 DNA immunization were more immunogenic compared to MUC1 DNA alone. Moreover, tumor protection was evident at a dose as low as 0.5 microg. In addition, strong T cell responses were induced in HLA-A2 transgenic and human MUC1 transgenic mice. These results demonstrate the potential of OM and RM as efficient non-viral gene delivery carriers for DNA vaccines for use in cancer immunotherapy.
Journal of Immunology | 2016
Bruce D. Wines; Hillary A. Vanderven; Sandra Esparon; Anne B. Kristensen; Stephen J. Kent; P. Mark Hogarth
Ab-dependent cellular cytotoxicity, phagocytosis, and Ag presentation are key mechanisms of action of Abs arising in vaccine or naturally acquired immunity, as well of therapeutic mAbs. Cells expressing the low-affinity FcγRs (FcγRII or CD32 and FcγRIII or CD16) are activated for these functions when receptors are aggregated following the binding of IgG-opsonized targets. Despite the diversity of the Fc receptor proteins, IgG ligands, and potential responding cell types, the induction of all FcγR-mediated responses by opsonized targets requires the presentation of multiple Fc regions in close proximity to each other. We demonstrated that such “near-neighbor” Fc regions can be detected using defined recombinant soluble (rs) dimeric low-affinity ectodomains (rsFcγR) that have an absolute binding requirement for the simultaneous engagement of two IgG Fc regions. Like cell surface–expressed FcγRs, the binding of dimeric rsFcγR ectodomains to Ab immune complexes was affected by Ab subclass, presentation, opsonization density, Fc fucosylation, or mutation. The activation of an NK cell line and primary NK cells by human IgG-opsonized influenza A hemagglutinin correlated with dimeric rsFcγRIIIa binding activity but not with Ab titer. Furthermore, the dimeric rsFcγR binding assay sensitively detected greater Fc receptor activity to pandemic H1N1 hemagglutinin after the swine influenza pandemic of 2009 in pooled human polyclonal IgG. Thus these dimeric rsFcγR ectodomains are validated, defined probes that should prove valuable in measuring the immune-activating capacity of IgG Abs elicited by infection or vaccination or experimentally derived IgG and its variants.
Biomaterials | 2009
Choon Kit Tang; Kuo-Ching Sheng; Sandra Esparon; Owen Proudfoot; Vasso Apostolopoulos; Geoffrey A. Pietersz
Receptor mediated gene delivery is an attractive non-viral method for targeting genetic material to specific cell types. We have previously utilized oxidized (OMPLL) and reduced mannan poly-L-lysine (RMPLL) to target DNA vaccines to antigen presenting cells and demonstrated that it could induce far stronger immune responses in mice compared to naked DNA immunization. In this study, we describe the immune enhancing attributes of mannan-PLL mediated DNA vaccination at the molecular level. Several attributes observed in similar gene delivery conjugates, such as entry via the endocytic pathway, low toxicity, protection from nucleases and compaction of particle size, were also evident here. In addition, OMPLL and RMPLL conjugates had profound effects on the antigen presentation functions of dendritic cells and macrophages, through the stimulation of cytokine production and maturation of dendritic cells. Interestingly, we demonstrate that OMPLL-DNA and RMPLL-DNA are able to mediate dendritic cell activation via toll-like receptor 2 as opposed to mannan alone which mediates via toll-like receptor 4. Overall, this report leads to greater understanding of how oxidized and reduced mannan mediated gene delivery could augment immune responses to DNA vaccination and provide insights into ways of further improving its immunogenicity.
Immunology and Cell Biology | 2011
Dodie S. Pouniotis; Sandra Esparon; Vasso Apostolopoulos; Geoffrey A. Pietersz
Cytoplasmic delivery and cross‐presentation of proteins and peptides is necessary for processing and presentation of antigens for the generation of cytotoxic T cells. We previously described the use of the 16 amino acid peptide penetratin from the Drosophila Antennapedia homeodomain (penetratin, Antp) to transport cytotoxic T lymphocyte epitopes derived from ovalbumin (OVA) or the Mucin‐1 tumor‐associated antigen into cells. We have now shown that penetratin covalently conjugated to OVA protein and linked in tandem to CD4+ and/or CD8+ T‐cell epitopes from OVA‐stimulated T cells in vitro (B3Z T‐cell hybridoma and OT‐I and OT‐II T cells). The induction of these responses was directly mediated by the penetratin peptide as linking a nonspecific 16‐mer peptide to OVA or mixing did not induce CD8+ or CD4+ T‐cell responses in vitro. Furthermore, interferon (IFN)‐γ‐secreting CD4+ and CD8+ T cells were induced which suppressed B16.OVA tumor growth in C57BL/6 mice. Tumor protection was mediated by a CD8+ T‐cell‐dependent mechanism and did not require CD4+ help to protect mice 7 days after a boost immunization. Alternatively, 40 days after a boost immunization, the presence of CD4+ help enhanced antigen‐specific IFN‐γ‐secreting CD8+ T cells and tumor protection in mice challenged with B16.OVA. Long‐term CD8 responses were equally enhanced by antigen‐specific and universal CD4 help. In addition, immunization with AntpOVA significantly delayed growth of B16.OVA tumors in mice in a tumor therapy model.
Molecules | 2015
Nicole Brooks; Sandra Esparon; Dodie S. Pouniotis; Geoffrey A. Pietersz
Cell penetrating peptides (CPP), including the TAT peptide from the human immunodeficiency virus transactivator of transcription (HIV-TAT) protein and penetratin from Drosophila Antennapedia homeodomain protein, translocate various cargos including peptides and proteins across cellular barriers. This mode of delivery has been harnessed by our group and others to deliver antigenic proteins or peptides into the cytoplasm of antigen processing cells (APC) such as monocyte-derived dendritic cells (MoDC). Antigens or T cell epitopes delivered by CPP into APC in vivo generate antigen-specific cytotoxic T cell and helper T cell responses in mice. Furthermore, mice immunised with these peptides or proteins are protected from a tumour challenge. The functional properties of CPP are dependent on the various cargos being delivered and the target cell type. Despite several studies demonstrating superior immunogenicity of TAT and Antp-based immunogens, none has compared the immunogenicity of antigens delivered by TAT and Antp CPP. In the current study we demonstrate that a cytotoxic T cell epitope from the mucin 1 (MUC1) tumour associated antigen, when delivered by TAT or Antp, generates identical immune responses in mice resulting in specific MUC1 T cell responses as measured by in vivo CTL assays, IFNγ ELISpot assays and prophylactic tumour protection.
Molecules | 2018
Nicole Brooks; Jennifer L. Hsu; Sandra Esparon; Dodie S. Pouniotis; Geoffrey A. Pietersz
Peptide-based vaccines for cancer have many advantages however, for optimization these immunogens should incorporate peptide epitopes that induce CD8, as well as CD4 responses, antibody and long term immunity. Cell penetrating peptides (CPP) with a capacity of cytosolic delivery have been used to deliver antigenic peptides and proteins to antigen presenting cells to induce cytotoxic T cell, helper T cell and humoral responses in mice. For this study, a tripartite CPP including a mucin 1 (MUC1) variable number of tandem repeat (VNTR) containing multiple T cell epitopes and tetanus toxoid universal T helper epitope peptide (tetCD4) was synthesised (AntpMAPMUC1tet) and immune responses investigated in mice. Mice vaccinated with AntpMAPMUC1tet + CpG show enhanced antigen-specific interferon-gamma (IFN-γ) and IL-4 T cell responses compared with AntpMAPMUC1tet vaccination alone and induced a Th1 response, characterised by a higher ratio of IgG2a antibody/IgG1 antibodies. Furthermore, vaccination generated long term MUC1-specific antibody and T cell responses and delayed growth of MUC1+ve tumours in mice. This data demonstrates the efficient delivery of branched multiple antigen peptides incorporating CPP and that the addition of CpG augments immune responses.
BMC Infectious Diseases | 2015
Owen Proudfoot; Sandra Esparon; Choon-Kit Tang; Karen L. Laurie; Ian G. Barr; Geoffrey A. Pietersz