Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Guidi is active.

Publication


Featured researches published by Sandra Guidi.


Hippocampus | 2009

Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood

Tiziana Rubino; Natalia Realini; Daniela Braida; Sandra Guidi; Valeria Capurro; Daniela Viganò; Cinzia Guidali; Marta Pinter; Mariaelvina Sala; Renata Bartesaghi; Daniela Parolaro

Marijuana and hashish are the illicit drugs most frequently used by human adolescents. Given the continued neurodevelopment throughout adolescence, adolescents may be more vulnerable than adults to certain neural consequences of heavy marijuana use. This study aimed to assess whether an experimental model of adolescent chronic exposure to Δ9‐tetrahydrocannabinol (THC), may induce lasting effects on learning and memory. Adolescent rats have been treated with THC or its vehicle from 35 to 45 postnatal days (PND) and left undisturbed until their adulthood (75 PND) when aversive and spatial memory was assessed using the passive avoidance and radial maze tasks. No alteration was found in aversive memory, but in the radial maze THC pretreated animals exhibited a worse performance than vehicles, suggesting a deficit in spatial working memory. To correlate memory impairment to altered neuroplasticity, level of marker proteins was investigated in the hippocampus, the most relevant area mediating spatial memory. A significant decrease in the astroglial marker glial fibrillar acid protein was found as well as in pre‐ and postsynaptic protein expression (VAMP2, PSD95) and NMDA receptor levels in pretreated rats. To parallel these changes to alteration in dendritic morphology, Golgi‐Cox staining was performed in the hippocampal dentate gyrus. Pretreated rats had a significantly lower total dendritic length and number than vehicles, as well as reduced spine density. Our data suggest that THC pretreated rats may establish less synaptic contacts and/or less efficient synaptic connections throughout the hippocampus and this could represent the molecular underpinning of the cognitive deficit induced by adolescent THC treatment.


The Journal of Neuroscience | 2010

Early Pharmacotherapy Restores Neurogenesis and Cognitive Performance in the Ts65Dn Mouse Model for Down Syndrome

Patrizia Bianchi; Elisabetta Ciani; Sandra Guidi; Stefania Trazzi; Daniela Felice; Gabriele Grossi; Mercedes Fernandez; Alessandro Giuliani; Laura Calzà; Renata Bartesaghi

Down syndrome (DS) is a genetic pathology characterized by intellectual disability and brain hypotrophy. Widespread neurogenesis impairment characterizes the fetal and neonatal DS brain, strongly suggesting that this defect may be a major determinant of mental retardation. Our goal was to establish, in a mouse model for DS, whether early pharmacotherapy improves neurogenesis and cognitive behavior. Neonate Ts65Dn mice were treated from postnatal day (P) 3 to P15 with fluoxetine, an antidepressant that inhibits serotonin (5-HT) reuptake and increases proliferation in the adult Ts65Dn mouse (Clark et al., 2006). On P15, they received a BrdU injection and were killed after either 2 h or 1 month. Results showed that P15 Ts65Dn mice had notably defective proliferation in the hippocampal dentate gyrus, subventricular zone, striatum, and neocortex and that proliferation was completely rescued by fluoxetine. In the hippocampus of untreated P15 Ts65Dn mice, we found normal 5-HT levels but a lower expression of 5-HT1A receptors and brain-derived neurotrophic factor (BDNF). In Ts65Dn mice, fluoxetine treatment restored the expression of 5-HT1A receptors and BDNF. One month after cessation of treatment, there were more surviving cells in the dentate gyrus of Ts65Dn mice, more cells with a neuronal phenotype, more proliferating precursors, and more granule cells. These animals were tested for contextual fear conditioning, a hippocampus-dependent memory task, and exhibited a complete recovery of memory performance. Results show that early pharmacotherapy with a drug usable by humans can correct neurogenesis and behavioral impairment in a model for DS.


Brain Pathology | 2008

Neurogenesis Impairment and Increased Cell Death Reduce Total Neuron Number in the Hippocampal Region of Fetuses with Down Syndrome

Sandra Guidi; Paola Bonasoni; Claudio Ceccarelli; Donatella Santini; Fabio Gualtieri; Elisabetta Ciani; Renata Bartesaghi

We previously obtained evidence for reduced cell proliferation in the dentate gyrus (DG) of fetuses with Down syndrome (DS), suggesting that the hippocampal hypoplasia seen in adulthood may be caused by defective early neuron production. The goal of this study was to establish whether DS fetuses (17–21 weeks of gestation) exhibit reduction in total cell number in the DG, hippocampus and parahippocampal gyrus (PHG). Volumes of the cellular layers and cell number were estimated with Cavalieris principle and the optical fractionator method, respectively. We found that in DS fetuses all investigated structures had a reduced volume and cell number. Analysis of cell phenotype showed that DS fetuses had a higher percentage of cells with astrocytic phenotype but a smaller percentage of cells with neuronal phenotype. Immunohistochemistry for Ki‐67, a marker of cycling cells, showed that DS fetuses had less proliferating cells in the germinal zones of the hippocampus and PHG. We additionally found that in the hippocampal region of DS fetuses there was a higher incidence of apoptotic cell death. Results show reduced neuron number in the DS hippocampal region and suggest that this defect is caused by disruption of neurogenesis and apoptosis, two fundamental processes underlying brain building.


Journal of Neurochemistry | 2004

Nitric oxide regulates cGMP-dependent cAMP-responsive element binding protein phosphorylation and Bcl-2 expression in cerebellar neurons: implication for a survival role of nitric oxide.

Elisabetta Ciani; Sandra Guidi; Renata Bartesaghi; Antonio Contestabile

Nitric oxide (NO) is a small, diffusible, highly reactive molecule with a dichotomous regulatory role in the brain: an intra‐ and intercellular messenger under physiological conditions and a neurodegenerative agent under pathological conditions. We have recently demonstrated that long‐lasting exposure to an neuronal nitric oxide synthase (nNOS) inhibitor down‐regulated serine/threonine kinase (Akt) survival pathway and caused apoptosis in cerebellar granule cell cultures. The present study further substantiates the role of NO in neuronal survival by demonstrating that blocking its production down‐regulates the activity of cAMP‐responsive element binding protein (CREB), a transcription factor involved in cell survival and synaptic plasticity. Pharmacological dissection of the pathway linking NO to CREB shows that cGMP and its kinase are intermediate effectors. We also identify Bcl‐2 as one of the anti‐apoptotic genes down‐regulated by NO shortage and decreased CREB phosphorylation. These results not only confirm the role of CREB in neuronal survival but also provide circumstantial evidence for a novel link among NO, CREB activation and survival.


Brain Pathology | 2008

RESEARCH ARTICLE: Neurogenesis Impairment and Increased Cell Death Reduce Total Neuron Number in the Hippocampal Region of Fetuses with Down Syndrome

Sandra Guidi; Paola Bonasoni; Claudio Ceccarelli; Donatella Santini; Fabio Gualtieri; Elisabetta Ciani; Renata Bartesaghi

We previously obtained evidence for reduced cell proliferation in the dentate gyrus (DG) of fetuses with Down syndrome (DS), suggesting that the hippocampal hypoplasia seen in adulthood may be caused by defective early neuron production. The goal of this study was to establish whether DS fetuses (17–21 weeks of gestation) exhibit reduction in total cell number in the DG, hippocampus and parahippocampal gyrus (PHG). Volumes of the cellular layers and cell number were estimated with Cavalieris principle and the optical fractionator method, respectively. We found that in DS fetuses all investigated structures had a reduced volume and cell number. Analysis of cell phenotype showed that DS fetuses had a higher percentage of cells with astrocytic phenotype but a smaller percentage of cells with neuronal phenotype. Immunohistochemistry for Ki‐67, a marker of cycling cells, showed that DS fetuses had less proliferating cells in the germinal zones of the hippocampus and PHG. We additionally found that in the hippocampal region of DS fetuses there was a higher incidence of apoptotic cell death. Results show reduced neuron number in the DS hippocampal region and suggest that this defect is caused by disruption of neurogenesis and apoptosis, two fundamental processes underlying brain building.


Human Molecular Genetics | 2011

APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome

Stefania Trazzi; Valentina Maria Mitrugno; Emanuele Valli; Claudia Fuchs; Simona Rizzi; Sandra Guidi; Giovanni Perini; Renata Bartesaghi; Elisabetta Ciani

Mental retardation in Down syndrome (DS) appears to be related to severe neurogenesis impairment during critical phases of brain development. Recent lines of evidence in the cerebellum of a mouse model for DS (the Ts65Dn mouse) have shown a defective responsiveness to Sonic Hedgehog (Shh), a potent mitogen that controls cell division during brain development, suggesting involvement of the Shh pathway in the neurogenesis defects of DS. Based on these premises, we sought to identify the molecular mechanisms underlying derangement of the Shh pathway in neural precursor cells (NPCs) from Ts65Dn mice. By using an in vitro model of NPCs obtained from the subventricular zone and hippocampus, we found that trisomic NPCs had an increased expression of the Shh receptor Patched1 (Ptch1), a membrane protein that suppresses the action of a second receptor, Smoothened (Smo), thereby maintaining the pathway in a repressed state. Partial silencing of Ptch1 expression in trisomic NPCs restored cell proliferation, indicating that proliferation impairment was due to Ptch1 overexpression. The overexpression of Ptch1 in trisomic NPCs resulted from increased levels of AICD [a transcription-promoting fragment of amyloid precursor protein (APP)] and increased AICD binding to the Ptch1 promoter. Our data provide novel evidence that Ptch1 overexpression underlies derangement of the Shh pathway in trisomic NPCs with consequent proliferation impairment. The demonstration that Ptch1 overexpression in trisomic NPCs is due to an APP fragment provides a link between this trisomic gene and the defective neuronal production that characterizes the DS brain.


Journal of Biological Chemistry | 2002

Nitric Oxide Protects Neuroblastoma Cells from Apoptosis Induced by Serum Deprivation through cAMP-response Element-binding Protein (CREB) Activation

Elisabetta Ciani; Sandra Guidi; Giuliano Della Valle; Giovanni Perini; Renata Bartesaghi; Antonio Contestabile

The transcription factor cAMP-response element-binding protein (CREB) mediates survival in many cells, including neurons. Recently, death of cerebellar granule neurons due to nitric oxide (NO) deprivation was shown to be accompanied by down-regulation of CREB activity (1). We now provide evidence that overproduction of endogenous NO or supplementation with exogenous NO renders SK-N-BE human neuroblastoma cells more resistant to apoptosis induced by serum deprivation. Parental cells underwent apoptosis after 24 h of serum deprivation, an outcome largely absent in clones overexpressing human neuronal nitric oxide synthase (nNOS). This protective effect was reversed by the inhibition of NOS itself or soluble guanylyl cyclase, pointing at cGMP as an intermediate effector of NO-mediated rescue. A slow-releasing NO donor protected parental cells to a significant extent, thus confirming the survival effect of NO. The impaired viability of serum-deprived parental cells was accompanied by a strong decrease of CREB phosphorylation and transcriptional activity, effects significantly attenuated in nNOS-overexpressing clones. To confirm the role of CREB in survival, the ectopic expression of CREB and/or protein kinase A largely counteracted serum deprivation-induced cell death of SK-N-BE cells, whereas transfection with a CREB negative mutant was ineffective. These experiments indicate that CREB activity is an important step for NO-mediated survival in neuronal cells.


Brain Pathology | 2011

Widespread proliferation impairment and hypocellularity in the cerebellum of fetuses with down syndrome.

Sandra Guidi; Elisabetta Ciani; Paola Bonasoni; Donatella Santini; Renata Bartesaghi

Evidence in mouse models for Down syndrome (DS) and human fetuses with DS clearly shows severe neurogenesis impairment in various telencephalic regions, suggesting that this defect may underlie the cognitive abnormalities of DS. As cerebellar hypotrophy and motor disturbances are part of the clinical features of DS, the goal of our study was to establish whether these defects may be related to neurogenesis impairment during cerebellar development. We found that in fetuses with DS (17–21 weeks of gestation) the cerebellum had an immature pattern, a reduced volume and notably fewer cells (−25%/−50%) in all cerebellar layers. Immunohistochemistry for Ki‐67, a marker of cycling cells, showed impaired proliferation (−17%/−50%) of precursors from both cerebellar neurogenic regions (external granular layer and ventricular zone). No differences in apoptotic cell death were found in DS vs. control fetuses. The current study provides novel evidence that in the cerebellum of DS fetuses there is a generalized hypocellularity and that this defect is due to proliferation impairment, rather than to an increased cell death. The reduced proliferation potency found in the DS fetal cerebellum, in conjunction with previous evidence, strengthens the idea that the trisomic brain is characterized by widespread neurogenesis disruption.


Brain Pathology | 2010

Lithium restores neurogenesis in the subventricular zone of the Ts65Dn mouse, a model for Down syndrome.

Patrizia Bianchi; Elisabetta Ciani; A. Contestabile; Sandra Guidi; Renata Bartesaghi

Down syndrome (DS), a high‐incidence genetic pathology, involves brain hypoplasia and mental retardation. Emerging evidence suggests that reduced neurogenesis may be a major determinant of brain underdevelopment in DS. To establish whether it is possible to improve neurogenesis in DS, Ts65Dn mice—the most widely used model for DS—and euploid mice were treated with control or lithium chow for 1 month. During the last 3 days animals received one daily injection of 5‐bromo‐2‐deoxyuridine (BrdU)—a marker of proliferating cells—and were sacrificed 24 h after the last injection. Neurogenesis was examined in the subventricular zone (SVZ), a region that retains a neurogenic potential across life. We found that Ts65Dn mice had less (−40%) BrdU+ cells than euploid mice, indicating severe proliferation impairment. Treatment with lithium increased the number of Brdu+ cells in both euploid and Ts65Dn mice. In the latter the number of Brdu+ cells became similar to that of untreated euploid mice. Our study shows that lithium is able to restore cell proliferation in the SVZ of the Ts65Dn mouse and point at treatments with mood stabilizers as a potential tool to improve neurogenesis in patients with DS.


Brain | 2014

Prenatal pharmacotherapy rescues brain development in a Down’s syndrome mouse model

Sandra Guidi; Fiorenza Stagni; Patrizia Bianchi; Elisabetta Ciani; Andrea Giacomini; Marianna De Franceschi; Randal X. Moldrich; Nyoman D. Kurniawan; Karine Mardon; Alessandro Giuliani; Laura Calzà; Renata Bartesaghi

Intellectual impairment is a strongly disabling feature of Downs syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Downs syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Downs syndrome have been attempted in Downs syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Downs syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Downs syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored dendritic development, cortical and hippocampal synapse development and brain volume. Importantly, these effects were accompanied by recovery of behavioural performance. The cognitive deficits caused by Downs syndrome have long been considered irreversible. The current study provides novel evidence that a pharmacotherapy with fluoxetine during embryonic development is able to fully rescue the abnormal brain development and behavioural deficits that are typical of Downs syndrome. If the positive effects of fluoxetine on the brain of a mouse model are replicated in foetuses with Downs syndrome, fluoxetine, a drug usable in humans, may represent a breakthrough for the therapy of intellectual disability in Downs syndrome.

Collaboration


Dive into the Sandra Guidi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S Severi

University of Bologna

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge