Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefania Trazzi is active.

Publication


Featured researches published by Stefania Trazzi.


The Journal of Neuroscience | 2010

Early Pharmacotherapy Restores Neurogenesis and Cognitive Performance in the Ts65Dn Mouse Model for Down Syndrome

Patrizia Bianchi; Elisabetta Ciani; Sandra Guidi; Stefania Trazzi; Daniela Felice; Gabriele Grossi; Mercedes Fernandez; Alessandro Giuliani; Laura Calzà; Renata Bartesaghi

Down syndrome (DS) is a genetic pathology characterized by intellectual disability and brain hypotrophy. Widespread neurogenesis impairment characterizes the fetal and neonatal DS brain, strongly suggesting that this defect may be a major determinant of mental retardation. Our goal was to establish, in a mouse model for DS, whether early pharmacotherapy improves neurogenesis and cognitive behavior. Neonate Ts65Dn mice were treated from postnatal day (P) 3 to P15 with fluoxetine, an antidepressant that inhibits serotonin (5-HT) reuptake and increases proliferation in the adult Ts65Dn mouse (Clark et al., 2006). On P15, they received a BrdU injection and were killed after either 2 h or 1 month. Results showed that P15 Ts65Dn mice had notably defective proliferation in the hippocampal dentate gyrus, subventricular zone, striatum, and neocortex and that proliferation was completely rescued by fluoxetine. In the hippocampus of untreated P15 Ts65Dn mice, we found normal 5-HT levels but a lower expression of 5-HT1A receptors and brain-derived neurotrophic factor (BDNF). In Ts65Dn mice, fluoxetine treatment restored the expression of 5-HT1A receptors and BDNF. One month after cessation of treatment, there were more surviving cells in the dentate gyrus of Ts65Dn mice, more cells with a neuronal phenotype, more proliferating precursors, and more granule cells. These animals were tested for contextual fear conditioning, a hippocampus-dependent memory task, and exhibited a complete recovery of memory performance. Results show that early pharmacotherapy with a drug usable by humans can correct neurogenesis and behavioral impairment in a model for DS.


Human Molecular Genetics | 2009

DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions

Suhasni Gopalakrishnan; Beth A. Sullivan; Stefania Trazzi; Giuliano Della Valle; Keith D. Robertson

DNA methylation is an epigenetically imposed mark of transcriptional repression that is essential for maintenance of chromatin structure and genomic stability. Genome-wide methylation patterns are mediated by the combined action of three DNA methyltransferases: DNMT1, DNMT3A and DNMT3B. Compelling links exist between DNMT3B and chromosome stability as emphasized by the mitotic defects that are a hallmark of ICF syndrome, a disease arising from germline mutations in DNMT3B. Centromeric and pericentromeric regions are essential for chromosome condensation and the fidelity of segregation. Centromere regions contain distinct epigenetic marks, including dense DNA hypermethylation, yet the mechanisms by which DNA methylation is targeted to these regions remains largely unknown. In the present study, we used a yeast two-hybrid screen and identified a novel interaction between DNMT3B and constitutive centromere protein CENP-C. CENP-C is itself essential for mitosis. We confirm this interaction in mammalian cells and map the domains responsible. Using siRNA knock downs, bisulfite genomic sequencing and ChIP, we demonstrate for the first time that CENP-C recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and that CENP-C and DNMT3B regulate the histone code in these regions, including marks characteristic of centromeric chromatin. Finally, we demonstrate that loss of CENP-C or DNMT3B leads to elevated chromosome misalignment and segregation defects during mitosis and increased transcription of centromeric repeats. Taken together, our data reveal a novel mechanism by which DNA methylation is targeted to discrete regions of the genome and contributes to chromosomal stability.


Human Molecular Genetics | 2011

APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome

Stefania Trazzi; Valentina Maria Mitrugno; Emanuele Valli; Claudia Fuchs; Simona Rizzi; Sandra Guidi; Giovanni Perini; Renata Bartesaghi; Elisabetta Ciani

Mental retardation in Down syndrome (DS) appears to be related to severe neurogenesis impairment during critical phases of brain development. Recent lines of evidence in the cerebellum of a mouse model for DS (the Ts65Dn mouse) have shown a defective responsiveness to Sonic Hedgehog (Shh), a potent mitogen that controls cell division during brain development, suggesting involvement of the Shh pathway in the neurogenesis defects of DS. Based on these premises, we sought to identify the molecular mechanisms underlying derangement of the Shh pathway in neural precursor cells (NPCs) from Ts65Dn mice. By using an in vitro model of NPCs obtained from the subventricular zone and hippocampus, we found that trisomic NPCs had an increased expression of the Shh receptor Patched1 (Ptch1), a membrane protein that suppresses the action of a second receptor, Smoothened (Smo), thereby maintaining the pathway in a repressed state. Partial silencing of Ptch1 expression in trisomic NPCs restored cell proliferation, indicating that proliferation impairment was due to Ptch1 overexpression. The overexpression of Ptch1 in trisomic NPCs resulted from increased levels of AICD [a transcription-promoting fragment of amyloid precursor protein (APP)] and increased AICD binding to the Ptch1 promoter. Our data provide novel evidence that Ptch1 overexpression underlies derangement of the Shh pathway in trisomic NPCs with consequent proliferation impairment. The demonstration that Ptch1 overexpression in trisomic NPCs is due to an APP fragment provides a link between this trisomic gene and the defective neuronal production that characterizes the DS brain.


Journal of Biological Chemistry | 2010

CB1 Cannabinoid Receptors Increase Neuronal Precursor Proliferation through AKT/Glycogen Synthase Kinase-3β/β-Catenin Signaling

Stefania Trazzi; Martin Steger; Valentina Maria Mitrugno; Renata Bartesaghi; Elisabetta Ciani

The endocannabinoid system is involved in the regulation of many physiological effects in the central and peripheral nervous system. Recent findings have demonstrated the presence of a functional endocannabinoid system within neuronal progenitors located in the hippocampus and ventricular/subventricular zone that participates in the regulation of cell proliferation. It is presently unknown whether the endocannabinoid system exerts a widespread effect on neuronal precursors from different neurogenic regions, and very little is known about the signaling by which it regulates neuronal precursor proliferation. Herein, we demonstrate the presence of cannabinoid CB1 receptors in granule cell precursors (GCPs) during early cerebellar development. Activation of CB1 receptors by HU-210 promoted GCP proliferation in vitro, an effect that was prevented by a selective CB1 antagonist. Accordingly, in vivo experiments showed that GCP proliferation was increased by chronic HU-210 treatment and that in CB1-deficient mice cell proliferation was significantly lower than in wild-type littermates, indicating that the endocannabinoid system is physiologically involved in regulation of GCP proliferation. The pro-proliferative effect of cannabinoids in GCPs was mediated through the CB1/AKT/glycogen synthase kinase-3β/β-catenin pathway. Involvement of this pathway was also observed in cultures of neuronal precursors from the subventricular zone, suggesting that this pathway may be a general mechanism by which endocannabinoids regulate proliferation of neuronal precursors. These observations suggest that endocannabinoids constitute a new family of lipid signaling cues that may exert a widespread effect on neuronal precursor proliferation during brain development.


PLOS ONE | 2009

The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation.

Stefania Trazzi; Giovanni Perini; Roberto Bernardoni; Monica Zoli; Joseph C. Reese; Andrea Musacchio; Giuliano Della Valle

CENP-C is a fundamental component of functional centromeres. The elucidation of its structure-function relationship with centromeric DNA and other kinetochore proteins is critical to the understanding of centromere assembly. CENP-C carries two regions, the central and the C-terminal domains, both of which are important for the ability of CENP-C to associate with the centromeric DNA. However, while the central region is largely divergent in CENP-C homologues, the C-terminal moiety contains two regions that are highly conserved from yeast to humans, named Mif2p homology domains (blocks II and III). The activity of these two domains in human CENP-C is not well defined. In this study we performed a functional dissection of C-terminal CENP-C region analyzing the role of single Mif2p homology domains through in vivo and in vitro assays. By immunofluorescence and Chromatin immunoprecipitation assay (ChIP) we were able to elucidate the ability of the Mif2p homology domain II to target centromere and contact alpha satellite DNA. We also investigate the interactions with other conserved inner kinetochore proteins by means of coimmunoprecipitation and bimolecular fluorescence complementation on cell nuclei. We found that the C-terminal region of CENP-C (Mif2p homology domain III) displays multiple activities ranging from the ability to form higher order structures like homo-dimers and homo-oligomers, to mediate interaction with CENP-A and histone H3. Overall, our findings support a model in which the Mif2p homology domains of CENP-C, by virtue of their ability to establish multiple contacts with DNA and centromere proteins, play a critical role in the structuring of kinethocore chromatin.


Brain Pathology | 2013

Early Pharmacotherapy with Fluoxetine Rescues Dendritic Pathology in the Ts65Dn Mouse Model of Down Syndrome

Sandra Guidi; Fiorenza Stagni; Patrizia Bianchi; Elisabetta Ciani; Elena Ragazzi; Stefania Trazzi; Gabriele Grossi; Chiara Mangano; Laura Calzà; Renata Bartesaghi

Down syndrome DS is a genetic pathology characterized by brain hypotrophy and severe cognitive impairment. Although defective neurogenesis is an important determinant of mental disability, a severe dendritic pathology appears to be an equally important factor. A previous study showed that fluoxetine, a selective serotonin reuptake inhibitor, fully restores neurogenesis in the Ts65Dn mouse model of DS. The goal of the current study was to establish whether fluoxetine also restores dendritic development. In mice aged 45 days, treated with fluoxetine in the postnatal period P3–P15, we examined the dendritic arbor of the granule cells of the dentate gyrus (DG). The granule cells of trisomic mice had a severely hypotrophic dendritic arbor, fewer spines and a reduced innervation than euploid mice. Treatment with fluoxetine fully restored all these defects. In Ts65Dn mice, we found reduced levels of serotonin that were restored by treatment. Results show that a pharmacotherapy with fluoxetine is able to rescue not only the number of granule neurons but also their “quality” in terms of correct maturation and connectivity. These findings strongly suggest that fluoxetine may be a drug of choice for the improvement of the major defects in the DS brain and, possibly, of mental retardation.


Journal of Structural Biology | 2002

In vivo functional dissection of human inner kinetochore protein CENP-C.

Stefania Trazzi; Roberto Bernardoni; Daniel Diolaiti; Valeria Politi; William C. Earnshaw; Giovanni Perini; Giuliano Della Valle

CENP-C is a fundamental component of the inner kinetochore plate and contributes to the formation of functional centromeres in eukaryotic organisms. Recruitment of CENP-C to kinetochore requires other centromere proteins, particularly CENP-A, CENP-H, and CENP-I. However, how CENP-C is correctly localized at the kinetochore is not clearly determined, mainly due to the functional variety of its domains, which hints at a complex recruitment mechanism. Here, by both immunofluorescent labeling and chromatin/immunoprecipitation we could show that human CENP-C contains two distinct domains, one in the central region, between amino acids 426 and 537, and the second one in the carboxyl terminal region, between amino acids 638 and 943, which are both capable of localizing at centromeres and binding alpha-satellite DNA. The presence of two domains that iterate the same function despite being significantly different in their amino acid sequence and structure suggests that CENP-C may target the centromere by establishing multiple contacts with both the DNA and protein constituents of the kinetochore.


Neurobiology of Disease | 2014

Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3β signaling

Claudia Fuchs; Stefania Trazzi; Roberta Torricella; Rocchina Viggiano; Marianna De Franceschi; Elena Amendola; Cornelius Gross; Laura Calzà; Renata Bartesaghi; Elisabetta Ciani

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a neurodevelopmental disorder characterized by early-onset intractable seizures, severe developmental delay, intellectual disability, and Retts syndrome-like features. Since the physiological functions of CDKL5 still need to be elucidated, in the current study we took advantage of a new Cdkl5 knockout (KO) mouse model in order to shed light on the role of this gene in brain development. We mainly focused on the hippocampal dentate gyrus, a region that largely develops postnatally and plays a key role in learning and memory. Looking at the process of neurogenesis, we found a higher proliferation rate of neural precursors in Cdkl5 KO mice in comparison with wild type mice. However, there was an increase in apoptotic cell death of postmitotic granule neuron precursors, with a reduction in total number of granule cells. Looking at dendritic development, we found that in Cdkl5 KO mice the newly-generated granule cells exhibited a severe dendritic hypotrophy. In parallel, these neurodevelopmental defects were associated with impairment of hippocampus-dependent memory. Looking at the mechanisms whereby CDKL5 exerts its functions, we identified a central role of the AKT/GSK-3β signaling pathway. Overall our findings highlight a critical role of CDKL5 in the fundamental processes of brain development, namely neuronal precursor proliferation, survival and maturation. This evidence lays the basis for a better understanding of the neurological phenotype in patients carrying mutations in the CDKL5 gene.


Journal of Biological Chemistry | 2013

The Amyloid Precursor Protein (APP) Triplicated Gene Impairs Neuronal Precursor Differentiation and Neurite Development through Two Different Domains in the Ts65Dn Mouse Model for Down Syndrome

Stefania Trazzi; Claudia Fuchs; Emanuele Valli; Giovanni Perini; Renata Bartesaghi; Elisabetta Ciani

Background: Individuals with Down syndrome suffer from mental retardation due to severe neurogenesis impairment. Results: Normalization of the triplicated gene APP expression restores neuronal maturation and differentiation in trisomic neuronal precursors. Conclusion: APP overproduction contributes to neurogenesis impairment in DS. Significance: APP signaling may be a target for therapeutic approaches aiming to improve brain development in DS. Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS.


Neuroscience | 2016

Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on hippocampal development in the Ts65Dn mouse model of Down syndrome

Fiorenza Stagni; Andrea Giacomini; Marco Emili; Stefania Trazzi; Sandra Guidi; Martina Sassi; Elisabetta Ciani; Roberto Rimondini; Renata Bartesaghi

Cognitive disability is an unavoidable feature of Down syndrome (DS), a genetic disorder due to the triplication of human chromosome 21. DS is associated with alterations of neurogenesis, neuron maturation and connectivity that are already present at prenatal life stages. Recent evidence shows that pharmacotherapies can have a large impact on the trisomic brain provided that they are administered perinatally. Epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea, performs many actions in the brain, including inhibition of DYRK1A, a kinase that is over-expressed in the DS brain and contributes to the DS phenotype. Young adults with DS treated with EGCG exhibit some cognitive benefits, although these effects disappear with time. We deemed it extremely important, however, to establish whether treatment with EGCG at the initial stages of brain development leads to plastic changes that outlast treatment cessation. In the current study, we exploited the Ts65Dn mouse model of DS in order to establish whether pharmacotherapy with EGCG during peak of neurogenesis in the hippocampal dentate gyrus (DG) enduringly restores hippocampal development and memory performance. Euploid and Ts65Dn mice were treated with EGCG from postnatal day 3 (P3) to P15. The effects of treatment were examined at its cessation (at P15) or after one month (at P45). We found that at P15 treated trisomic pups exhibited restoration of neurogenesis, total hippocampal granule cell number and levels of pre- and postsynaptic proteins in the DG, hippocampus and neocortex. However, at P45 none of these effects were still present, nor did treated Ts65Dn mice exhibit any improvement in hippocampus-dependent tasks. These findings show that treatment with EGCG carried out in the neonatal period rescues numerous trisomy-linked brain alterations. However, even during this, the most critical time window for hippocampal development, EGCG does not elicit enduring effects on the hippocampal physiology.

Collaboration


Dive into the Stefania Trazzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge