Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra K. Loo is active.

Publication


Featured researches published by Sandra K. Loo.


Journal of Abnormal Psychology | 2012

Validity of DSM-IV attention deficit/hyperactivity disorder symptom dimensions and subtypes.

Erik G. Willcutt; Joel T. Nigg; Bruce F. Pennington; Mary V. Solanto; Luis Augusto Rohde; Rosemary Tannock; Sandra K. Loo; Caryn L. Carlson; Keith McBurnett; Benjamin B. Lahey

Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) criteria for attention deficit/hyperactivity disorder (ADHD) specify two dimensions of inattention and hyperactivity-impulsivity symptoms that are used to define three nominal subtypes: predominantly hyperactive-impulsive type (ADHD-H), predominantly inattentive type (ADHD-I), and combined type (ADHD-C). To aid decision making for DSM-5 and other future diagnostic systems, a comprehensive literature review and meta-analysis of 546 studies was completed to evaluate the validity of the DSM-IV model of ADHD. Results indicated that DSM-IV criteria identify individuals with significant and persistent impairment in social, academic, occupational, and adaptive functioning when intelligence, demographic factors, and concurrent psychopathology are controlled. Available data overwhelmingly support the concurrent, predictive, and discriminant validity of the distinction between inattention and hyperactivity-impulsivity symptoms, and indicate that nearly all differences among the nominal subtypes are consistent with the relative levels of inattention and hyperactivity-impulsivity symptoms that define the subtypes. In contrast, the DSM-IV subtype model is compromised by weak evidence for the validity of ADHD-H after first grade, minimal support for the distinction between ADHD-I and ADHD-C in studies of etiological influences, academic and cognitive functioning, and treatment response, and the marked longitudinal instability of all three subtypes. Overall, we conclude that the DSM-IV ADHD subtypes provide a convenient clinical shorthand to describe the functional and behavioral correlates of current levels of inattention and hyperactivity-impulsivity symptoms, but do not identify discrete subgroups with sufficient long-term stability to justify the classification of distinct forms of the disorder. Empirical support is stronger for an alternative model that would replace the subtypes with dimensional modifiers that reflect the number of inattention and hyperactivity-impulsivity symptoms at the time of assessment. (PsycINFO Database Record (c) 2012 APA, all rights reserved).


Journal of the American Academy of Child and Adolescent Psychiatry | 2010

Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder

Benjamin M. Neale; Sarah E. Medland; Stephan Ripke; Philip Asherson; Barbara Franke; Klaus-Peter Lesch; Stephen V. Faraone; Thuy Trang Nguyen; Helmut Schäfer; Peter Holmans; Mark J. Daly; Hans-Christoph Steinhausen; Christine M. Freitag; Andreas Reif; Tobias J. Renner; Marcel Romanos; Jasmin Romanos; Susanne Walitza; Andreas Warnke; Jobst Meyer; Haukur Palmason; Jan K. Buitelaar; Alejandro Arias Vasquez; Nanda Lambregts-Rommelse; Michael Gill; Richard Anney; Kate Langely; Michael Conlon O'Donovan; Nigel Melville Williams; Michael John Owen

OBJECTIVE Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of existing studies to boost statistical power. METHOD We used data from four projects: a) the Childrens Hospital of Philadelphia (CHOP); b) phase I of the International Multicenter ADHD Genetics project (IMAGE); c) phase II of IMAGE (IMAGE II); and d) the Pfizer-funded study from the University of California, Los Angeles, Washington University, and Massachusetts General Hospital (PUWMa). The final sample size consisted of 2,064 trios, 896 cases, and 2,455 controls. For each study, we imputed HapMap single nucleotide polymorphisms, computed association test statistics and transformed them to z-scores, and then combined weighted z-scores in a meta-analysis. RESULTS No genome-wide significant associations were found, although an analysis of candidate genes suggests that they may be involved in the disorder. CONCLUSIONS Given that ADHD is a highly heritable disorder, our negative results suggest that the effects of common ADHD risk variants must, individually, be very small or that other types of variants, e.g., rare ones, account for much of the disorders heritability.


Nature Genetics | 2012

Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder

Josephine Elia; Joseph T. Glessner; Kai Wang; Nagahide Takahashi; Corina Shtir; Dexter Hadley; Patrick Sleiman; Haitao Zhang; Cecilia E. Kim; Reid J. Robison; Gholson J. Lyon; James H. Flory; Jonathan P. Bradfield; Marcin Imielinski; Cuiping Hou; Edward C. Frackelton; Rosetta M. Chiavacci; Takeshi Sakurai; Cara Rabin; Frank A. Middleton; Kelly Thomas; Maria Garris; Frank D. Mentch; Christine M. Freitag; Hans-Christoph Steinhausen; Alexandre A. Todorov; Andreas Reif; Aribert Rothenberger; Barbara Franke; Eric Mick

Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10−9). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10−6). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ∼10% of the cases (P = 4.38 × 10−10) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts.


Applied Neuropsychology | 2005

Clinical utility of EEG in attention deficit hyperactivity disorder.

Sandra K. Loo; Russell A. Barkley

Electrophysiological measures were among the first to be used to study brain processes in children with attention deficit hyperactivity disorder (ADHD; Diagnostic and Statistical Manual of Mental Disorders [4th ed.], American Psychiatric Association, 1994) and have been used as such for over 30 years (see Hastings & Barkley, 1978, for an early review). More recently, electroencephalography (EEG) has been used both in research to describe and quantify the underlying neurophysiology of ADHD, but also clinically in the assessment, diagnosis, and treatment of ADHD. This review will first provide a brief overview of EEG and then present some of the research findings of EEG correlates in ADHD. Then, the utility of EEG in making an ADHD diagnosis and predicting stimulant response will be examined. Finally, and more controversially, we will review the results of the most recent studies on EEG biofeedback (neurofeedback) as a treatment for ADHD and the issues that remain to be addressed in the research examining the efficacy this therapeutic approach.


American Journal of Psychiatry | 2012

Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13.3

Nigel Melville Williams; Barbara Franke; Eric Mick; Richard Anney; Christine M. Freitag; Michael Gill; Anita Thapar; Michael Conlon O'Donovan; Michael John Owen; Peter Holmans; Lindsey Kent; Frank A. Middleton; Yanli Zhang-James; Lu Liu; Jobst Meyer; T. T. Nguyen; Jasmin Romanos; Marcel Romanos; Christiane Seitz; Tobias J. Renner; Susanne Walitza; Andreas Warnke; Haukur Palmason; Jan Buitelaar; Nanda Rommelse; Alejandro Arias Vasquez; Ziarih Hawi; Kate Langley; Joseph A. Sergeant; Hans-Christoph Steinhausen

Objective: Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder. Because of its multifactorial etiology, however, identifying the genes involved has been difficult. The authors followed up on recent findings suggesting that rare copy number variants (CNVs) may be important for ADHD etiology. Method: The authors performed a genome-wide analysis of large, rare CNVs (<1% population frequency) in children with ADHD (N=896) and comparison subjects (N=2,455) from the IMAGE II Consortium. Results: The authors observed 1,562 individually rare CNVs >100 kb in size, which segregated into 912 independent loci. Overall, the rate of rare CNVs >100 kb was 1.15 times higher in ADHD case subjects relative to comparison subjects, with duplications spanning known genes showing a 1.2-fold enrichment. In accordance with a previous study, rare CNVs >500 kb showed the greatest enrichment (1.28-fold). CNVs identified in ADHD case subjects were significantly enriched for loci implicated in autism and in schizophrenia. Duplications spanning the CHRNA7 gene at chromosome 15q13.3 were associated with ADHD in single-locus analysis. This finding was consistently replicated in an additional 2,242 ADHD case subjects and 8,552 comparison subjects from four independent cohorts from the United Kingdom, the United States, and Canada. Presence of the duplication at 15q13.3 appeared to be associated with comorbid conduct disorder. Conclusions: These findings support the enrichment of large, rare CNVs in ADHD and implicate duplications at 15q13.3 as a novel risk factor for ADHD. With a frequency of 0.6% in the populations investigated and a relatively large effect size (odds ratio=2.22, 95% confidence interval=1.5–3.6), this locus could be an important contributor to ADHD etiology.


Journal of the American Academy of Child and Adolescent Psychiatry | 2003

Functional effects of the DAT1 polymorphism on EEG measures in ADHD.

Sandra K. Loo; Elaine Specter; Andrew Smolen; Christian J. Hopfer; Peter Teale; Martin Reite

OBJECTIVE This paper examines whether dopamine transporter gene (DAT1) allele status mediates medication-related change in cognitive and neurophysiological measures among children with attention-deficiency/hyperactivity disorder (ADHD). METHOD A single 10-mg dose of methylphenidate was given in a double-blind, placebo-controlled fashion to children with ADHD who were seen for cognitive testing and EEG recording. Buccal samples were obtained and genotyped for the DAT1 polymorphism. RESULTS DAT1 allele status was associated with performance on a sustained attention task and medication-related EEG changes. Compared with those with one or more copies of the DAT1 9-repeat allele (9R), children with two copies of the 10-repeat allele (10R) exhibited poorer performance on the vigilance task. In addition, children with 10R exhibited medication-related EEG changes of increased central and parietal beta power, decreased right frontal theta power, and lower theta/beta ratios; 9R carriers showed the opposite pattern. CONCLUSIONS The data suggest that the DAT1 polymorphism mediates medication-related changes in cortical activity among children with ADHD.


American Journal of Medical Genetics | 2008

Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder

Kaixin Zhou; Astrid Dempfle; Mauricio Arcos-Burgos; Steven C. Bakker; Tobias Banaschewski; Joseph Biederman; Jan K. Buitelaar; F. Xavier Castellanos; Alysa E. Doyle; Richard P. Ebstein; Jenny Ekholm; Paola Forabosco; Barbara Franke; Christine M. Freitag; Susann Friedel; Michael Gill; Johannes Hebebrand; Anke Hinney; Christian Jacob; Klaus-Peter Lesch; Sandra K. Loo; Francisco Lopera; James T. McCracken; James J. McGough; Jobst Meyer; Eric Mick; Ana Miranda; Maximilian Muenke; Fernando Mulas; Stanley F. Nelson

Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome‐wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies, there has been limited replications between the various independent datasets. The current study gathered the results from all seven of the ADHD linkage scans and performed a Genome Scan Meta Analysis (GSMA) to identify the genomic region with most consistent linkage evidence across the studies. Genome‐wide significant linkage (PSR = 0.00034, POR = 0.04) was identified on chromosome 16 between 64 and 83 Mb. In addition there are nine other genomic regions from the GSMA showing nominal or suggestive evidence of linkage. All these linkage results may be informative and focus the search for novel ADHD susceptibility genes.


American Journal of Human Genetics | 2004

Attention deficit hyperactivity disorder: fine mapping supports linkage to 5p13, 6q12, 16p13, and 17p11.

Matthew N. Ogdie; Simon E. Fisher; May Yang; Janeen Ishii; Clyde Francks; Sandra K. Loo; Rita M. Cantor; James T. McCracken; James J. McGough; Susan L. Smalley; Stanley F. Nelson

We completed fine mapping of nine positional candidate regions for attention-deficit/hyperactivity disorder (ADHD) in an extended population sample of 308 affected sibling pairs (ASPs), constituting the largest linkage sample of families with ADHD published to date. The candidate chromosomal regions were selected from all three published genomewide scans for ADHD, and fine mapping was done to comprehensively validate these positional candidate regions in our sample. Multipoint maximum LOD score (MLS) analysis yielded significant evidence of linkage on 6q12 (MLS 3.30; empiric P=.024) and 17p11 (MLS 3.63; empiric P=.015), as well as suggestive evidence on 5p13 (MLS 2.55; empiric P=.091). In conjunction with the previously reported significant linkage on the basis of fine mapping 16p13 in the same sample as this report, the analyses presented here indicate that four chromosomal regions--5p13, 6q12, 16p13, and 17p11--are likely to harbor susceptibility genes for ADHD. The refinement of linkage within each of these regions lays the foundation for subsequent investigations using association methods to detect risk genes of moderate effect size.


Journal of the American Academy of Child and Adolescent Psychiatry | 2010

Family-Based Genome-Wide Association Scan of Attention-Deficit/Hyperactivity Disorder

Eric Mick; Alexandre A. Todorov; Susan L. Smalley; Xiaolan Hu; Sandra K. Loo; Richard D. Todd; Joseph Biederman; Deirdre Byrne; Bryan M. DeChairo; Allan Guiney; James T. McCracken; James J. McGough; Stanley F. Nelson; Angela M. Reiersen; Timothy E. Wilens; Janet Wozniak; Benjamin M. Neale; Stephen V. Faraone

OBJECTIVE Genes likely play a substantial role in the etiology of attention-deficit/hyperactivity disorder (ADHD). However, the genetic architecture of the disorder is unknown, and prior genome-wide association studies (GWAS) have not identified a genome-wide significant association. We have conducted a third, independent, multisite GWAS of DSM-IV-TR ADHD. METHOD Families were ascertained at Massachusetts General Hospital (MGH; N = 309 trios), Washington University at St. Louis (WASH-U; N = 272 trios), and University of California at Los Angeles (UCLA; N = 156 trios). Genotyping was conducted with the Illumina Human1M or Human1M-Duo BeadChip platforms. After applying quality control filters, association with ADHD was tested with 835,136 SNPs in 735 DSM-IV ADHD trios from 732 families. RESULTS Our smallest p value (6.7E-07) did not reach the threshold for genome-wide statistical significance (5.0E-08), but one of the 20 most significant associations was located in a candidate gene of interest for ADHD (SLC9A9, rs9810857, p = 6.4E-6). We also conducted gene-based tests of candidate genes identified in the literature and found additional evidence of association with SLC9A9. CONCLUSIONS We and our colleagues in the Psychiatric GWAS Consortium are working to pool together GWAS samples to establish the large data sets needed to follow-up on these results and to identify genes for ADHD and other disorders.


Molecular Psychiatry | 2004

Genome-wide scan of reading ability in affected sibling pairs with attention-deficit/hyperactivity disorder: unique and shared genetic effects

Sandra K. Loo; Simon E. Fisher; Clyde Francks; Matthew N. Ogdie; Il MacPhie; May Yang; James T. McCracken; James J. McGough; Stan F. Nelson; Anthony P. Monaco; Susan L. Smalley

Attention-deficit/hyperactivity disorder (ADHD) and reading disability (RD) are common highly heritable disorders of childhood, which frequently co-occur. Data from twin and family studies suggest that this overlap is, in part, due to shared genetic underpinnings. Here, we report the first genome-wide linkage analysis of measures of reading ability in children with ADHD, using a sample of 233 affected sibling pairs who previously participated in a genome-wide scan for susceptibility loci in ADHD. Quantitative trait locus (QTL) analysis of a composite reading factor defined from three highly correlated reading measures identified suggestive linkage (multipoint maximum lod score, MLS>2.2) in four chromosomal regions. Two regions (16p, 17q) overlap those implicated by our previous genome-wide scan for ADHD in the same sample: one region (2p) provides replication for an RD susceptibility locus, and one region (10q) falls ∼35 cM from a modestly highlighted region in an independent genome-wide scan of siblings with ADHD. Investigation of an individual reading measure of Reading Recognition supported linkage to putative RD susceptibility regions on chromosome 8p (MLS=2.4) and 15q (MLS=1.38). Thus, the data support the existence of genetic factors that have pleiotropic effects on ADHD and reading ability—as suggested by shared linkages on 16p, 17q and possibly 10q—but also those that appear to be unique to reading—as indicated by linkages on 2p, 8p and 15q that coincide with those previously found in studies of RD. Our study also suggests that reading measures may represent useful phenotypes in ADHD research. The eventual identification of genes underlying these unique and shared linkages may increase our understanding of ADHD, RD and the relationship between the two.

Collaboration


Dive into the Sandra K. Loo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irma Moilanen

Oulu University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Mick

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

May H. Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

May Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Barbara Franke

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge