Sandra M. Pasternack
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra M. Pasternack.
Nature Genetics | 2008
Sandra M. Pasternack; Ivar von Kügelgen; Khalid Al Aboud; Young-Ae Lee; Franz Rüschendorf; Katrin Voss; Axel M. Hillmer; Gerhard J. Molderings; Thomas Franz; Alfredo Ramirez; Peter Nürnberg; Markus M. Nöthen; Regina C. Betz
Hypotrichosis simplex is a group of nonsyndromic human alopecias. We mapped an autosomal recessive form of this disorder to chromosome 13q14.11–13q21.33, and identified homozygous truncating mutations in P2RY5, which encodes an orphan G protein–coupled receptor. Furthermore, we identified oleoyl-L-α-lysophosphatidic acid (LPA), a bioactive lipid, as a ligand for P2Y5 in reporter gene and radioligand binding experiments. Homology and studies of signaling transduction pathways suggest that P2Y5 is a member of a subgroup of LPA receptors, which also includes LPA4 and LPA5. Our study is the first to implicate a G protein–coupled receptor as essential for and specific to the maintenance of human hair growth. This finding may provide opportunities for new therapeutic approaches to the treatment of hair loss in humans.
American Journal of Human Genetics | 2006
Regina C. Betz; Laura Planko; Sibylle Eigelshoven; S. Hanneken; Sandra M. Pasternack; Heinrich Büssow; Kris Van Den Bogaert; Joerg Wenzel; Markus Braun-Falco; Arno Rütten; Michael A. Rogers; Thomas Ruzicka; Markus M. Nöthen; Thomas M. Magin; Roland Kruse
Dowling-Degos disease (DDD) is an autosomal dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation of the flexures. We performed a genomewide linkage analysis of two German families and mapped DDD to chromosome 12q, with a total LOD score of 4.42 ( theta =0.0) for marker D12S368. This region includes the keratin gene cluster, which we screened for mutations. We identified loss-of-function mutations in the keratin 5 gene (KRT5) in all affected family members and in six unrelated patients with DDD. These represent the first identified mutations that lead to haploinsufficiency in a keratin gene. The identification of loss-of-function mutations, along with the results from additional functional studies, suggest a crucial role for keratins in the organization of cell adhesion, melanosome uptake, organelle transport, and nuclear anchorage.
American Journal of Human Genetics | 2014
F. Buket Basmanav; Ana-Maria Oprisoreanu; Sandra M. Pasternack; Holger Thiele; Günter Fritz; Jörg Wenzel; Leopold Größer; Maria Wehner; Sabrina Wolf; Christina Fagerberg; Anette Bygum; Janine Altmüller; Arno Rütten; Laurent Parmentier; Laila El Shabrawi-Caelen; Christian Hafner; Peter Nürnberg; Roland Kruse; Susanne Schoch; S. Hanneken; Regina C. Betz
Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4*), c.652C>T (p.Arg218*), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218*) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology.
Journal of Investigative Dermatology | 2012
Dagny Jagielska; Silke Redler; Felix F. Brockschmidt; Christine Herold; Sandra M. Pasternack; Natalie Garcia Bartels; S. Hanneken; Sibylle Eigelshoven; Melanie Refke; Sandra Barth; Kathrin A. Giehl; Roland Kruse; Gerhard Lutz; Hans Wolff; Bettina Blaumeiser; Markus Böhm; Ulrike Blume-Peytavi; Tim Becker; Markus M. Nöthen; Regina C. Betz
Recently, the first genome-wide association study (GWAS) of alopecia areata (AA) was conducted in a North-American sample, and this identified eight susceptibility loci surpassing genome-wide significance. The aim of the present follow-up association analysis was to confirm five of these eight loci (single-nucleotide polymorphisms (SNPs) from the CTLA4, IL-2RA, and HLA regions were not included due to previous own findings) and test 12 other loci from the GWAS, which did not surpass the threshold for genome-wide significance. Twenty-three SNPs from the 17 loci were investigated using a sample of 1,702 Central European AA patients and 1,723 controls. Of the five loci with previously reported genome-wide significance, association was confirmed for all of these: ULBP3/ULBP6, PRDX5, IL-2/IL-21, STX17, and IKZF4/ERBB3 (P-value <0.05). To detect robust evidence for association among the 12 other loci, a meta-analysis of the present association data and the data of the recent GWAS was performed. Genome-wide significant association was found for rs20541 (P(comb)=7.52 × 10(-10); odds ratio (OR)=1.30 (1.23-1.38)) and rs998592 (P(comb)=1.11 × 10(-11); OR=1.28 (1.21-1.36)), thus establishing IL-13 and KIAA0350/CLEC16A as susceptibility loci for AA. Interestingly, IL-13 and KIAA0350/CLEC16A are susceptibility loci for other autoimmune diseases, supporting the hypothesis of shared pathways of autoimmune susceptibility.
American Journal of Human Genetics | 2012
Kathrin A. Giehl; Gertrud Eckstein; Sandra M. Pasternack; Silke Praetzel-Wunder; Thomas Ruzicka; Peter Lichtner; Kerstin Seidl; Michael A. Rogers; Elisabeth Graf; Lutz Langbein; Markus Braun-Falco; Regina C. Betz; Tim M. Strom
Punctate palmoplantar keratodermas (PPKPs) are rare autosomal-dominant inherited skin diseases that are characterized by multiple hyperkeratotic plaques distributed on the palms and soles. To date, two different loci in chromosomal regions 15q22-15q24 and 8q24.13-8q24.21 have been reported. Pathogenic mutations, however, have yet to be identified. In order to elucidate the genetic cause of PPKP type Buschke-Fischer-Brauer (PPKP1), we performed exome sequencing in five affected individuals from three families, and we identified in chromosomal region 15q22.33-q23 two heterozygous nonsense mutations-c.370C>T (p.Arg124(∗)) and c.481C>T (p.Arg161(∗))-in AAGAB in all affected individuals. Using immunoblot analysis, we showed that both mutations result in premature termination of translation and truncated protein products. Analyses of mRNA of affected individuals revealed that the disease allele is either not detectable or only detectable at low levels. To assess the consequences of the mutations in skin, we performed immunofluorescence analyses. Notably, the amount of granular staining in the keratinocytes of affected individuals was lower in the cytoplasm but higher around the nucleus than it was in the keratinocytes of control individuals. AAGAB encodes the alpha-and gamma-adaptin-binding protein p34 and might play a role in membrane traffic as a chaperone. The identification of mutations, along with the results from additional studies, defines the genetic basis of PPKP1 and provides evidence that AAGAB plays an important role in skin integrity.
British Journal of Dermatology | 2012
Gul Naz; Sandra M. Pasternack; C. Perrin; M. Mattheisen; Melanie Refke; Saadullah Khan; A. Gul; M. Simons; Wasim Ahmad; Regina C. Betz
Background Isolated nail dysplasia is rare and has been reported in only a small number of families.
British Journal of Dermatology | 2010
S. Hanneken; Arno Rütten; Sandra M. Pasternack; Sibylle Eigelshoven; L. El Shabrawi-Caelen; Joerg Wenzel; M. Braun-Falco; Thomas Ruzicka; Markus M. Nöthen; Rudolf Kruse; Regina C. Betz
Background Galli–Galli disease (GGD) is a rare genodermatosis. Its clinical presentation is identical to that of Dowling–Degos disease (DDD), but the presence of the histopathological feature of acantholysis in GGD is thought to distinguish the two disorders. Mutations in the keratin 5 gene (KRT5) have been identified in the majority of patients with DDD and in a small number of patients with GGD.
Journal of Investigative Dermatology | 2009
Sandra M. Pasternack; Ivar von Kügelgen; Melanie Müller; Vinzenz Oji; Heiko Traupe; Eli Sprecher; Markus M. Nöthen; Andreas R. Janecke; Regina C. Betz
Hypotrichosis simplex (HS) is a group of isolated alopecias that can be inherited as an autosomal-dominant or an autosomal-recessive trait. Hair loss usually begins in early childhood, and is diffuse and progressive. Mutations in LIPH, which encodes lipase member H, have recently been shown to cause an autosomal-recessive form of HS. Here we describe an Austrian HS patient who was found to be carrying compound heterozygous mutations in the LIPH gene: a 7-bp frameshift duplication (c.403_409dup; p.Gln137HisfsX1) and a recently reported 30-amino acid in-frame duplication (c.280_369dup; p.Gly94_Lys123dup). To examine the impact of LIPH mutations on lipid metabolism, we established an in vitro assay to measure the action of this phospholipase in a cell-based system. Both the 7-bp duplication frameshift mutation and all known in-frame mutations were observed to reduce the in vitro activity of the lipase in response to the addition of phosphatidic acid, the substrate of lipase H. The reduced production of lysophosphatidic acid (LPA) led to a reduced response of cells expressing the human G-protein-coupled receptor p2y5 (p2y5) receptor. Our study increases the spectrum of known LIPH mutations and provides biochemical evidence for the important role of lipase H and its product LPA in human hair growth.
Archives of Dermatological Research | 2009
Sagi Nahum; Sandra M. Pasternack; Jana Pforr; Margarita Indelman; Bernd Wollnik; Reuven Bergman; Markus M. Nöthen; Arne König; Ziyad Khamaysi; Regina C. Betz; Eli Sprecher
Autosomal recessive hypotrichosis simplex (ARHS) manifests with paucity of hair appearing during early childhood. We assessed four affected families. We initially genotyped three of these families for a panel of microsatellite markers spanning all ARHS-associated loci and obtained data suggesting linkage to 3q27, encompassing LIPH, which had previously been shown to be associated with ARHS. Accordingly, a homozygous duplication mutation in exon 2 of this gene (c.280_369dup; p.Gly94_Lys123dup) was found to segregate with the disease in all the families. Through the identification of the first duplication mutation in the human LIPH gene, we provide further evidence supporting a role for the phospholipase signalling pathway in hair growth and differentiation.
International Journal of Cancer | 2015
Sukanya Horpaopan; Isabel Spier; Alexander M. Zink; Janine Altmüller; Stefanie Holzapfel; Andreas Laner; Stefanie Vogt; Siegfried Uhlhaas; Stefanie Heilmann; Dietlinde Stienen; Sandra M. Pasternack; Kathleen Keppler; Ronja Adam; Katrin Kayser; Susanne Moebus; Markus Draaken; Franziska Degenhardt; Hartmut Engels; Andrea Hofmann; Markus M. Nöthen; Verena Steinke; Alberto Perez-Bouza; Stefan Herms; Elke Holinski-Feder; Holger Fröhlich; Holger Thiele; Per Hoffmann; Stefan Aretz
To uncover novel causative genes in patients with unexplained adenomatous polyposis, a model disease for colorectal cancer, we performed a genome‐wide analysis of germline copy number variants (CNV) in a large, well characterized APC and MUTYH mutation negative patient cohort followed by a targeted next generation sequencing (NGS) approach. Genomic DNA from 221 unrelated German patients was genotyped on high‐resolution SNP arrays. Putative CNVs were filtered according to stringent criteria, compared with those of 531 population‐based German controls, and validated by qPCR. Candidate genes were prioritized using in silico, expression, and segregation analyses, data mining and enrichment analyses of genes and pathways. In 27% of the 221 unrelated patients, a total of 77 protein coding genes displayed rare, nonrecurrent, germline CNVs. The set included 26 candidates with molecular and cellular functions related to tumorigenesis. Targeted high‐throughput sequencing found truncating point mutations in 12% (10/77) of the prioritized genes. No clear evidence was found for autosomal recessive subtypes. Six patients had potentially causative mutations in more than one of the 26 genes. Combined with data from recent studies of early‐onset colorectal and breast cancer, recurrent potential loss‐of‐function alterations were detected in CNTN6, FOCAD (KIAA1797), HSPH1, KIF26B, MCM3AP, YBEY and in three genes from the ARHGAP family. In the canonical Wnt pathway oncogene CTNNB1 (β‐catenin), two potential gain‐of‐function mutations were found. In conclusion, the present study identified a group of rarely affected genes which are likely to predispose to colorectal adenoma formation and confirmed previously published candidates for tumor predisposition as etiologically relevant.