Sandra M. Schmöckel
King Abdullah University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra M. Schmöckel.
Nature | 2017
David Erwin Jarvis; Yung Shwen Ho; Damien J. Lightfoot; Sandra M. Schmöckel; Bo Li; T.J.A. Borm; Hajime Ohyanagi; Katsuhiko Mineta; Craig T. Michell; Noha Saber; Najeh M. Kharbatia; Ryan R. Rupper; Aaron R. Sharp; Nadine Dally; Berin A. Boughton; Yong Woo; Ge Gao; Elio Schijlen; Xiujie Guo; Afaque Ahmad Imtiyaz Momin; Sónia Negrão; Salim Al-Babili; Christoph A. Gehring; Ute Roessner; Christian Jung; Kevin G. Murphy; Stefan T. Arold; Takashi Gojobori; C. Gerard van der Linden; Eibertus N. van Loo
Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.
Annals of Botany | 2017
Sónia Negrão; Sandra M. Schmöckel; Mark Tester
Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.
Plant Cell and Environment | 2013
Stuart J. Roy; W. Huang; X. J. Wang; A. Evrard; Sandra M. Schmöckel; Z. U. Zafar; Mark Tester
Salinity is a major abiotic stress which affects crop plants around the world, resulting in substantial loss of yield and millions of dollars of lost revenue. High levels of Na(+) in shoot tissue have many adverse effects and, crucially, yield in cereals is commonly inversely proportional to the extent of shoot Na(+) accumulation. We therefore need to identify genes, resistant plant cultivars and cellular processes that are involved in salinity tolerance, with the goal of introducing these factors into commercially available crops. Through the use of an Arabidopsis thaliana mapping population, we have identified a highly significant quantitative trait locus (QTL) linked to Na(+) exclusion. Fine mapping of this QTL identified a protein kinase (AtCIPK16), related to AtSOS2, that was significantly up-regulated under salt stress. Greater Na(+) exclusion was associated with significantly higher root expression of AtCIPK16, which is due to differences in the genes promoter. Constitutive overexpression of the gene in Arabidopsis leads to plants with significant reduction in shoot Na(+) and greater salinity tolerance. amiRNA knock-downs of AtCIPK16 in Arabidopsis show a negative correlation between the expression levels of the gene and the amount of shoot Na(+) . Transgenic barley lines overexpressing AtCIPK16 show increased salinity tolerance.
Nature Communications | 2016
Nadia Ali Al-Tamimi; Chris Brien; Helena Oakey; Bettina Berger; Stephanie Saade; Yung Shwen Ho; Sandra M. Schmöckel; Mark Tester; Sónia Negrão
High-throughput phenotyping produces multiple measurements over time, which require new methods of analyses that are flexible in their quantification of plant growth and transpiration, yet are computationally economic. Here we develop such analyses and apply this to a rice population genotyped with a 700k SNP high-density array. Two rice diversity panels, indica and aus, containing a total of 553 genotypes, are phenotyped in waterlogged conditions. Using cubic smoothing splines to estimate plant growth and transpiration, we identify four time intervals that characterize the early responses of rice to salinity. Relative growth rate, transpiration rate and transpiration use efficiency (TUE) are analysed using a new association model that takes into account the interaction between treatment (control and salt) and genetic marker. This model allows the identification of previously undetected loci affecting TUE on chromosome 11, providing insights into the early responses of rice to salinity, in particular into the effects of salinity on plant growth and transpiration.
Protein Expression and Purification | 2011
Hakan Dortay; Sandra M. Schmöckel; Joerg Fettke; Bernd Mueller-Roeber
With its homo-pentameric structure and calcium-dependent specificity for phosphocholine (PCh), human c-reactive protein (CRP) is produced by the liver and secreted in elevated quantities in response to inflammation. CRP is widely accepted as a cardiac marker, e.g. in point-of-care diagnostics, however, its heterologous expression has proven difficult. Here, we demonstrate the expression of CRP in different Escherichia coli strains as well as by in vitro transcription/translation. Although expression in these systems was straightforward, most of the protein that accumulated was insoluble. We therefore expanded our study to include the expression of CRP in two eukaryotic hosts, namely the yeast Kluyveromyces lactis and the protozoon Leishmania tarentolae. Both expression systems are optimized for secretion of recombinant proteins and here allowed successful expression of soluble CRP. We also demonstrate the purification of recombinant CRP from Leishmania growth medium; the purification of protein expressed from K. lactis was not successful. Functional and intact CRP pentamer is known to interact with PCh in Ca(2+)-dependent manner. In this report we verify the binding specificity of recombinant CRP from L. tarentolae (2 μg/mL culture medium) for PCh.
PLOS ONE | 2015
Sandra M. Schmöckel; Alexandre F. Garcia; Bettina Berger; Mark Tester; Alex A. R. Webb; Stuart J. Roy
A common feature of stress signalling pathways are alterations in the concentration of cytosolic free calcium ([Ca2+]cyt), which allow the specific and rapid transmission of stress signals through a plant after exposure to a stress, such as salinity. Here, we used an aequorin based bioluminescence assay to compare the NaCl-induced changes in [Ca2+]cyt of the Arabidopsis ecotypes Col-0 and C24. We show that C24 lacks the NaCl specific component of the [Ca2+]cyt signature compared to Col-0. This phenotypic variation could be exploited as a screening methodology for the identification of yet unknown components in the early stages of the salt signalling pathway.
Frontiers in Plant Science | 2017
Yveline Pailles; Shwen Ho; Inês S. Pires; Mark Tester; Sónia Negrão; Sandra M. Schmöckel
Endemic flora of the Galapagos Islands has adapted to thrive in harsh environmental conditions. The wild tomato species from the Galapagos Islands, Solanum cheesmaniae and S. galapagense, are tolerant to various stresses, and can be crossed with cultivated tomato. However, information about genetic diversity and relationships within and between populations is necessary to use these resources efficiently in plant breeding. In this study, we analyzed 3,974 polymorphic SNP markers, obtained through the genotyping-by-sequencing technique, DArTseq, to elucidate the genetic diversity and population structure of 67 accessions of Galapagos tomatoes (compared to two S. lycopersicum varieties and one S. pimpinellifolium accession). Two clustering methods, Principal Component Analysis and STRUCTURE, showed clear distinction between the two species and a subdivision in the S. cheesmaniae group corresponding to geographical origin and age of the islands. High genetic variation among the accessions within each species was suggested by the AMOVA. High diversity in the S. cheesmaniae group and its correlation with the islands of origin were also suggested. This indicates a possible influence of the movement of the islands, from west to east, on the gene flow. Additionally, the absence of S. galapagense populations in the eastern islands points to the species divergence occurring after the eastern islands became isolated. Based on these results, it can be concluded that the population structure of the Galapagos tomatoes collection partially explains the evolutionary history of both species, knowledge that facilitates exploitation of their genetic potential for the identification of novel alleles contributing to stress tolerance.
Frontiers in Plant Science | 2017
Sandra M. Schmöckel; Damien J. Lightfoot; Rozaimi Razali; Mark Tester; David E. Jarvis
Chenopodium quinoa (quinoa) is an emerging crop that produces nutritious grains with the potential to contribute to global food security. Quinoa can also grow on marginal lands, such as soils affected by high salinity. To identify candidate salt tolerance genes in the recently sequenced quinoa genome, we used a multifaceted approach integrating RNAseq analyses with comparative genomics and topology prediction. We identified 219 candidate genes by selecting those that were differentially expressed in response to salinity, were specific to or overrepresented in quinoa relative to other Amaranthaceae species, and had more than one predicted transmembrane domain. To determine whether these genes might underlie variation in salinity tolerance in quinoa and its close relatives, we compared the response to salinity stress in a panel of 21 Chenopodium accessions (14 C. quinoa, 5 C. berlandieri, and 2 C. hircinum). We found large variation in salinity tolerance, with one C. hircinum displaying the highest salinity tolerance. Using genome re-sequencing data from these accessions, we investigated single nucleotide polymorphisms and copy number variation (CNV) in the 219 candidate genes in accessions of contrasting salinity tolerance, and identified 15 genes that could contribute to the differences in salinity tolerance of these Chenopodium accessions.
Nature | 2017
David E. Jarvis; Yung Shwen Ho; Damien J. Lightfoot; Sandra M. Schmöckel; Bo Li; T.J.A. Borm; Hajime Ohyanagi; Katsuhiko Mineta; Craig T. Michell; Noha Saber; Najeh M. Kharbatia; Ryan R. Rupper; Aaron R. Sharp; Nadine Dally; Berin A. Boughton; Yong H. Woo; Ge Gao; Elio Schijlen; Xiujie Guo; Afaque Ahmad Imtiyaz Momin; Sónia Negrão; Salim Al-Babili; Christoph A. Gehring; Ute Roessner; Christian Jung; Kevin G. Murphy; Stefan T. Arold; Takashi Gojobori; C. Gerard van der Linden; Eibertus N. van Loo
This corrects the article DOI: 10.1038/nature21370
Frontiers in Plant Science | 2018
Rozaimi Razali; Salim Bougouffa; Mitchell J. L. Morton; Damien J. Lightfoot; Intikhab Alam; Magbubah Essack; Stefan T. Arold; Allan Anthony Kamau; Sandra M. Schmöckel; Yveline Pailles; Mohammed Shahid; Craig T. Michell; Salim Al-Babili; Yung Shwen Ho; Mark Tester; Vladimir B. Bajic; Sónia Negrão
Solanum pimpinellifolium, a wild relative of cultivated tomato, offers a wealth of breeding potential for desirable traits such as tolerance to abiotic and biotic stresses. Here, we report the genome assembly and annotation of S. pimpinellifolium ‘LA0480.’ Moreover, we present phenotypic data from one field experiment that demonstrate a greater salinity tolerance for fruit- and yield-related traits in S. pimpinellifolium compared with cultivated tomato. The ‘LA0480’ genome assembly size (811 Mb) and the number of annotated genes (25,970) are within the range observed for other sequenced tomato species. We developed and utilized the Dragon Eukaryotic Analyses Platform (DEAP) to functionally annotate the ‘LA0480’ protein-coding genes. Additionally, we used DEAP to compare protein function between S. pimpinellifolium and cultivated tomato. Our data suggest enrichment in genes involved in biotic and abiotic stress responses. To understand the genomic basis for these differences in S. pimpinellifolium and S. lycopersicum, we analyzed 15 genes that have previously been shown to mediate salinity tolerance in plants. We show that S. pimpinellifolium has a higher copy number of the inositol-3-phosphate synthase and phosphatase genes, which are both key enzymes in the production of inositol and its derivatives. Moreover, our analysis indicates that changes occurring in the inositol phosphate pathway may contribute to the observed higher salinity tolerance in ‘LA0480.’ Altogether, our work provides essential resources to understand and unlock the genetic and breeding potential of S. pimpinellifolium, and to discover the genomic basis underlying its environmental robustness.