Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Morel is active.

Publication


Featured researches published by Sandra Morel.


Immunity | 2000

Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells.

Sandra Morel; Frédéric Lévy; Odile Burlet-Schiltz; Francis Brasseur; Michael Probst-Kepper; Anne-Lise Peitrequin; Bernard Monsarrat; Robert Van Velthoven; Jean-Charles Cerottini; Thierry Boon; Jean Edouard Gairin; Benoît Van den Eynde

By stimulating human lymphocytes with an autologous renal carcinoma, we obtained CTL recognizing an antigen derived from a novel, ubiquitous protein. The CTL failed to lyse autologous EBV-transformed B cells, even though the latter express the protein. This is due to the presence in these cells of immunoproteasomes, which, unlike standard proteasomes, cannot produce the antigenic peptide. We show that dendritic cells also carry immunoproteasomes and fail to present this antigen. This may explain why the relevant CTL escape thymic deletion and are not regularly activated in the periphery. Lack of cleavage by the immunoproteasome was also observed for melanoma differentiation antigen Melan-A26-35/HLA-A2, currently used for antitumoral vaccination. For immunization with such antigens, proteins should be less suitable than peptides, which do not require proteasome digestion in dendritic cells.


Journal of Immunology | 2009

AS04, an Aluminum Salt- and TLR4 Agonist-Based Adjuvant System, Induces a Transient Localized Innate Immune Response Leading to Enhanced Adaptive Immunity

Arnaud Didierlaurent; Sandra Morel; Laurence Lockman; Sandra L. Giannini; Michel Bisteau; Harald Carlsen; Anders Kielland; Olivier Vosters; Nathalie Vanderheyde; Francesca Schiavetti; Daniel Larocque; Marcelle Van Mechelen; Nathalie Garçon

Adjuvant System 04 (AS04) combines the TLR4 agonist MPL (3-O-desacyl-4′-monophosphoryl lipid A) and aluminum salt. It is a new generation TLR-based adjuvant licensed for use in human vaccines. One of these vaccines, the human papillomavirus (HPV) vaccine Cervarix, is used in this study to elucidate the mechanism of action of AS04 in human cells and in mice. The adjuvant activity of AS04 was found to be strictly dependent on AS04 and the HPV Ags being injected at the same i.m. site within 24 h of each other. During this period, AS04 transiently induced local NF-κB activity and cytokine production. This led to an increased number of activated Ag-loaded dendritic cells and monocytes in the lymph node draining the injection site, which further increased the activation of Ag-specific T cells. AS04 was also found to directly stimulate those APCs in vitro but not directly stimulate CD4+ T or B lymphocytes. These AS04-induced innate responses were primarily due to MPL. Aluminum salt appeared not to synergize with or inhibit MPL, but rather it prolonged the cytokine responses to MPL at the injection site. Altogether these results support a model in which the addition of MPL to aluminum salt enhances the vaccine response by rapidly triggering a local cytokine response leading to an optimal activation of APCs. The transient and confined nature of these responses provides further supporting evidence for the favorable safety profile of AS04 adjuvanted vaccines.


Current Opinion in Immunology | 2001

Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome.

Benoı̂t J. Van den Eynde; Sandra Morel

Upon exposure to IFN-gamma, the standard proteasome is replaced by the immunoproteasome, which contains LMP2, LMP7 and MECL1, and is considered more efficient at producing antigenic peptides presented to CD8(+) T cells. This view has been challenged this year by reports showing that some epitopes, mainly of self origin, are not processed by the immunoproteasome and that mature dendritic cells constitutively express immunoproteasomes and therefore cannot efficiently present such epitopes.


Journal of Experimental Medicine | 2002

The Production of a New MAGE-3 Peptide Presented to Cytolytic T Lymphocytes by HLA-B40 Requires the Immunoproteasome

Erwin S. Schultz; Jacques Chapiro; Christophe Lurquin; Stéphane Claverol; Odile Burlet-Schiltz; Guy Warnier; Vincenzo Russo; Sandra Morel; Frédéric Lévy; Thierry Boon; Benoît Van den Eynde; Pierre van der Bruggen

By stimulating human CD8+ T lymphocytes with autologous dendritic cells infected with an adenovirus encoding MAGE-3, we obtained a cytotoxic T lymphocyte (CTL) clone that recognized a new MAGE-3 antigenic peptide, AELVHFLLL, which is presented by HLA-B40. This peptide is also encoded by MAGE-12. The CTL clone recognized MAGE-3–expressing tumor cells only when they were first treated with IFN-γ. Since this treatment is known to induce the exchange of the three catalytic subunits of the proteasome to form the immunoproteasome, this result suggested that the processing of this MAGE-3 peptide required the immunoproteasome. Transfection experiments showed that the substitution of β5i (LMP7) for β5 is necessary and sufficient for producing the peptide, whereas a mutated form of β5i (LMP7) lacking the catalytically active site was ineffective. Mass spectrometric analyses of in vitro digestions of a long precursor peptide with either proteasome type showed that the immunoproteasome produced the antigenic peptide more efficiently, whereas the standard proteasome more efficiently introduced cleavages destroying the antigenic peptide. This is the first example of a tumor-specific antigen exclusively presented by tumor cells expressing the immunoproteasome.


Journal of Immunology | 2006

Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation.

Jacques Chapiro; Stéphane Claverol; Fanny Piette; Wenbin Ma; Vincent Stroobant; Benoît Guillaume; Jean-Edouard Gairin; Sandra Morel; Odile Burlet-Schiltz; Bernard Monsarrat; Thierry Boon; Benoît Van den Eynde

The immunoproteasome (IP) is usually viewed as favoring the production of antigenic peptides presented by MHC class I molecules, mainly because of its higher cleavage activity after hydrophobic residues, referred to as the chymotrypsin-like activity. However, some peptides have been found to be better produced by the standard proteasome. The mechanism of this differential processing has not been described. By studying the processing of three tumor antigenic peptides of clinical interest, we demonstrate that their differential processing mainly results from differences in the efficiency of internal cleavages by the two proteasome types. Peptide gp100209–217 (ITDQVPSFV) and peptide tyrosinase369–377 (YMDGTMSQV) are destroyed by the IP, which cleaves after an internal hydrophobic residue. Conversely, peptide MAGE-C2336–344 (ALKDVEERV) is destroyed by the standard proteasome by internal cleavage after an acidic residue, in line with its higher postacidic activity. These results indicate that the IP may destroy some antigenic peptides due to its higher chymotrypsin-like activity, rather than favor their production. They also suggest that the sets of peptides produced by the two proteasome types differ more than expected. Considering that mature dendritic cells mainly contain IPs, our results have implications for the design of immunotherapy strategies.


Journal of Immunology | 2002

The Final N-Terminal Trimming of a Subaminoterminal Proline-Containing HLA Class I-Restricted Antigenic Peptide in the Cytosol Is Mediated by Two Peptidases

Frédéric Lévy; Lena Burri; Sandra Morel; Anne-Lise Peitrequin; Nicole Lévy; Angela Bachi; Ulf Hellman; Benoît Van den Eynde; Catherine Servis

The proteasome produces MHC class I-restricted antigenic peptides carrying N-terminal extensions, which are trimmed by other peptidases in the cytosol or within the endoplasmic reticulum. In this study, we show that the N-terminal editing of an antigenic peptide with a predicted low TAP affinity can occur in the cytosol. Using proteomics, we identified two cytosolic peptidases, tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, that trimmed the N-terminal extensions of the precursors produced by the proteasome, and led to a transient enrichment of the final antigenic peptide. These peptidases acted either sequentially or redundantly, depending on the extension remaining at the N terminus of the peptides released from the proteasome. Inhibition of these peptidases abolished the CTL-mediated recognition of Ag-expressing cells. Although we observed some proteolytic activity in fractions enriched in endoplasmic reticulum, it could not compensate for the loss of tripeptidyl peptidase II/puromycin-sensitive aminopeptidase activities.


Journal of Immunology | 2014

Enhancement of Adaptive Immunity by the Human Vaccine Adjuvant AS01 Depends on Activated Dendritic Cells

Arnaud Didierlaurent; Catherine Collignon; Patricia Bourguignon; Sandrine Wouters; Kaat Fierens; Michel Fochesato; Najoua Dendouga; Christelle Langlet; Bernard Malissen; Bart N. Lambrecht; Nathalie Garçon; Marcelle Van Mechelen; Sandra Morel

Adjuvant System AS01 is a liposome-based vaccine adjuvant containing 3-O-desacyl-4′-monophosphoryl lipid A and the saponin QS-21. AS01 has been selected for the clinical development of several candidate vaccines including the RTS,S malaria vaccine and the subunit glycoprotein E varicella zoster vaccine (both currently in phase III). Given the known immunostimulatory properties of MPL and QS-21, the objective of this study was to describe the early immune response parameters after immunization with an AS01-adjuvanted vaccine and to identify relationships with the vaccine-specific adaptive immune response. Cytokine production and innate immune cell recruitment occurred rapidly and transiently at the muscle injection site and draining lymph node postinjection, consistent with the rapid drainage of the vaccine components to the draining lymph node. The induction of Ag-specific Ab and T cell responses was dependent on the Ag being injected at the same time or within 24 h after AS01, suggesting that the early events occurring postinjection were required for these elevated adaptive responses. In the draining lymph node, after 24 h, the numbers of activated and Ag-loaded monocytes and MHCIIhigh dendritic cells were higher after the injection of the AS01-adjuvanted vaccine than after Ag alone. However, only MHCIIhigh dendritic cells appeared efficient at and necessary for direct Ag presentation to T cells. These data suggest that the ability of AS01 to improve adaptive immune responses, as has been demonstrated in clinical trials, is linked to a transient stimulation of the innate immune system leading to the generation of high number of efficient Ag-presenting dendritic cells.


BioDrugs | 2011

Development of an AS04-Adjuvanted HPV Vaccine with the Adjuvant System Approach

Nathalie Garçon; Sandra Morel; Arnaud Didierlaurent; Dominique Descamps; Martine Wettendorff; Marcelle Van Mechelen

A novel human papillomavirus (HPV) vaccine has been formulated with virus-like particles of the L1 protein of HPV-16 and HPV-18, and the Adjuvant System 04 (AS04). AS04 is a combination of the toll-like receptor 4 agonist monophosphoryl lipid A (MPL) and aluminum hydroxide. The AS04-adjuvanted HPV vaccine induces a high and sustained immune response against HPV, including high levels of neutralizing antibodies at the cervical mucosa in women aged 15–55 years. Recently, the mechanism of action of AS04 has been evaluated in vitro in human cells and in vivo in mice and the data provide evidence for the molecular and cellular basis of the observed immunogenicity, efficacy, and safety profile of this formulation.In this review, we discuss how the results of GlaxoSmithKline’s clinical studies on immunogenicity, protection, and reactogenicity with the AS04-adjuvanted HPV vaccine are supported by the observed mechanism of action for the adjuvant.The adjuvant activity of AS04, as measured by enhanced antibody response to HPV antigens, was found to be strictly dependent on AS04 and the HPV antigens being injected at the same intramuscular site within 24 hours of each other. The addition of MPL to aluminum salt enhances humoral and cell-mediated response by rapidly triggering a local and transient cytokine response that leads to an increased activation of antigen-presenting cells and results in an improved presentation of antigen to CD4+ T cells.The added value of MPL in AS04 for an HPV vaccine was demonstrated in clinical studies by high vaccine-elicited antibody responses and the induction of high levels of memory B cells. The vaccine elicits cross protection against some other oncogenic HPV types (specifically HPV-31, -33, and -45) not contained in the vaccine. The localized and transient nature of the innate immune response supports the acceptable safety profile observed in clinical studies.


Cancer Research | 2006

Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses

Laurence Chapatte; Maha Ayyoub; Sandra Morel; Anne-Lise Peitrequin; Nicole Lévy; Catherine Servis; Benoît Van den Eynde; Danila Valmori; Frédéric Lévy

Dendritic cells are unique in their capacity to process antigens and prime naive CD8(+) T cells. Contrary to most cells, which express the standard proteasomes, dendritic cells express immunoproteasomes constitutively. The melanoma-associated protein Melan-A(MART1) contains an HLA-A2-restricted peptide that is poorly processed by melanoma cells expressing immunoproteasomes in vitro. Here, we show that the expression of Melan-A in dendritic cells fails to elicit T-cell responses in vitro and in vivo because it is not processed by the proteasomes of dendritic cells. In contrast, dendritic cells lacking immunoproteasomes induce strong anti-Melan-A T-cell responses in vitro and in vivo. These results suggest that the inefficient processing of self-antigens, such as Melan-A, by the immunoproteasomes of professional antigen-presenting cells prevents the induction of antitumor T-cell responses in vivo.


Nature Immunology | 2010

Production of an antigenic peptide by insulin-degrading enzyme

Nicolas Parmentier; Vincent Stroobant; Didier Colau; Philippe de Diesbach; Sandra Morel; Jacques Chapiro; Peter van Endert; Benoît Van den Eynde

Most antigenic peptides presented by major histocompatibility complex (MHC) class I molecules are produced by the proteasome. Here we show that a proteasome-independent peptide derived from the human tumor protein MAGE-A3 is produced directly by insulin-degrading enzyme (IDE), a cytosolic metallopeptidase. Cytotoxic T lymphocyte recognition of tumor cells was reduced after metallopeptidase inhibition or IDE silencing. Separate inhibition of the metallopeptidase and the proteasome impaired degradation of MAGE-A3 proteins, and simultaneous inhibition of both further stabilized MAGE-A3 proteins. These results suggest that MAGE-A3 proteins are degraded along two parallel pathways that involve either the proteasome or IDE and produce different sets of antigenic peptides presented by MHC class I molecules.

Collaboration


Dive into the Sandra Morel's collaboration.

Top Co-Authors

Avatar

Benoît Van den Eynde

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Thierry Boon

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Lévy

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Jacques Chapiro

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathalie Vigneron

Ludwig Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge