Sandra Pacharra
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Pacharra.
Journal of Proteome Research | 2012
Sandra Pacharra; Franz-Georg Hanisch; Isabelle Breloy
Protein O-mannosylation is an important modification in mammals, and deficiencies thereof lead to a variety of severe phenotypes. Although it has already been shown that the amount of O-mannosyl glycans in brain is very high, only very few proteins have been identified as O-mannosylated. Additionally, the functions of the O-mannose-based glycans are still speculative and only investigated for α-dystroglycan. In a previous study a cis-located peptide was identified, which controls O-mannosylation in mammals. A BLAST search on the basis of this peptidic determinant identified other potential O-mannosylated proteins. Among these neurofascin was chosen for further analysis as a recombinant probe (mucin domain) and as an endogenous protein from mouse brain. Mass spectrometric data for both proteins confirmed that neurofascin186 is indeed O-mannosylated. Glycopeptide analysis by liquid chromatography-tandem mass spectrometry allowed for the identification of some of the O-mannosylation sites, which are not restricted to the mucin domain but were found also within N-terminal IgG and Fibronectin domains of the protein.
Journal of Biological Chemistry | 2012
Isabelle Breloy; Sandra Pacharra; Philipp Ottis; David Bonar; Ammi Grahn; Franz-Georg Hanisch
Background: LacdiNAc and sulfo-LacdiNAc modification of N-glycoproteins/peptides is well documented. Results: O-Linked LacdiNAc and the novel phospho-LacdiNAc modification were detected and structurally characterized on core 2-glycans of six ECM-related proteins. Conclusion: LacdiNAc and phospho-LacdiNAc are expressed on ECM proteins. Significance: This novel modification opens new aspects in the posttranslational control of protein function. The terminal modification of glycans by β4 addition of N-acetylgalactosamine to N-acetylglucosamine with formation of the N,N-diacetyllactosediamine (LacdiNAc) moiety has been well documented for a number of N-linked glycoproteins and peptides, like neurohormones. Much less is known about O-glycoproteins in this regard because only human zona pellucida glycoprotein 3 (ZP3) and bovine proopiomelanocortin were reported to be LacdiNAc-modified. In searching for mammalian proteins modified with O-linked LacdiNAc we identified six positive species among nine endogenous and recombinant O-glycoproteins, which were extracellular matrix, or matrix-related proteins. These are ZP3 and the five novel LacdiNAc-positive species ECM1, AMACO, nidogen-1, α-dystroglycan, and neurofascin. The mass spectrometric analyses revealed a core 2-based tetrasaccharide as the common structural basis of O-linked LacdiNAc that could be further modified, similar to the type 2 LacNAc termini, with fucose, sialic acid, or sulfate. Here, we provide structural evidence for a novel type of mucin-type O-glycans that is strictly specific for LacdiNAc termini: sugar phosphorylation with formation of GalNAcβ1–4(phospho-)GlcNAc. The structural details of the phosphatase-labile compound were elucidated by MS2 analysis of tetralysine complexes and by MSn measurements of the permethylated glycan alditols. Phospho-LacdiNAc was detected in human HEK-293 as well as in mouse myoblast cells and in bovine brain tissue.
Journal of Proteome Research | 2013
Sandra Pacharra; Franz-Georg Hanisch; Martina Muehlenhoff; Andreas Faissner; Uwe Rauch; Isabelle Breloy
O-Mannosylation is an important protein modification in brain. During the last years, a few mammalian proteins have been identified as targets of the protein-O-mannosyltransferases 1 and 2. However, these still cannot explain the high content of O-mannosyl glycans in brain and the strong brain involvement of congenital muscular dystrophies caused by POMT mutations (Walker-Warburg syndrome, dystroglycanopathies). By fractionating and analyzing the glycoproteome of mouse and calf brain lysates, we could show that proteins of the perineural net, the lecticans, are O-mannosylated, indicating that major components of neuronal extracellular matrix are O-mannosylated in mammalian brain. This finding corresponds with the high content of O-mannosyl glycans in brain as well as with the brain involvement of dystroglycanopathies. In contrast, the lectican neurocan is not O-mannosylated when recombinantly expressed in EBNA-293 cells, revealing the possibility of different control mechanisms for the initiation of O-mannosylation in different cell types.
Biological Chemistry | 2012
Isabelle Breloy; Sandra Pacharra; Christina Aust; Franz-Georg Hanisch
Abstract We developed a gel-based global O-glycomics method applicable for highly complex protein mixtures entrapped in discontinuous gradient gel layers. The protocol is based on in-gel proteolysis with pronase followed by (glyco)peptide elution and off-gel reductive β-elimination. The protocol offers robust performance with sensitivity in the low picomolar range, is compatible with gel-based proteomics, and shows superior performance in global applications in comparison with workflows eliminating glycans in-gel or from electroblotted glycoproteins. By applying this method, we analyzed the O-glycome of human myoblasts and of the mouse brain O-glycoproteome. After semipreparative separation of mouse brain proteins by one-dimensional SDS gel electrophoresis, the O-glycans from proteins in different mass ranges were characterized with a focus on O-mannose-based glycans. The relative proportion of the latter, which generally represent a rare modification, increases to comparatively high levels in the mouse brain proteome in dependence of increasing protein masses.
Journal of Proteome Research | 2018
Katalin Barkovits; Andreas Linden; Sara Galozzi; Lukas Schilde; Sandra Pacharra; Brit Mollenhauer; Nadine Stoepel; Simone Steinbach; Caroline May; Julian Uszkoreit; Martin Eisenacher; Katrin Marcus
Cerebrospinal fluid (CSF) is in direct contact with the brain and serves as a valuable specimen to examine diseases of the central nervous system through analyzing its components. These include the analysis of metabolites, cells as well as proteins. For identifying new suitable diagnostic protein biomarkers bottom-up data-dependent acquisition (DDA) mass spectrometry-based approaches are most popular. Drawbacks of this method are stochastic and irreproducible precursor ion selection. Recently, data-independent acquisition (DIA) emerged as an alternative method. It overcomes several limitations of DDA, since it combines the benefits of DDA and targeted methods like selected reaction monitoring (SRM). We established a DIA method for in-depth proteome analysis of CSF. For this, four spectral libraries were generated with samples from native CSF ( n = 5), CSF fractionation (15 in total) and substantia nigra fractionation (54 in total) and applied to three CSF DIA replicates. The DDA and DIA methods for CSF were conducted with the same nanoLC parameters using a 180 min gradient. Compared to a conventional DDA method, our DIA approach increased the number of identified protein groups from 648 identifications in DDA to 1574 in DIA using a comprehensive spectral library generated with DDA measurements from five native CSF and 54 substantia nigra fractions. We also could show that a sample specific spectral library generated from native CSF only increased the identification reproducibility from three DIA replicates to 90% (77% with a DDA method). Moreover, by utilizing a substantia nigra specific spectral library for CSF DIA, over 60 brain-originated proteins could be identified compared to only 11 with DDA. In conclusion, the here presented optimized DIA method substantially outperforms DDA and could develop into a powerful tool for biomarker discovery in CSF. Data are available via ProteomeXchange with the identifiers PXD010698, PXD010708, PXD010690, PXD010705, and PXD009624.
Journal of Biomedical Materials Research Part B | 2018
Sandra Pacharra; Rocío Ortiz; Sean McMahon; Wenxin Wang; Richard Viebahn; Jochen Salber; Iban Quintana
Abstract Today, research in the field of bioresorbable vascular stents (BVS) not only focusses on a new material being nontoxic but also tries to enhance its biocompatibility in terms of endothelialization potential and hemocompatibility. To this end, we used picosecond laser ablation technology as a single‐step and contactless method for surface microstructuring of a bioresorbable polymer which can be utilized in stent manufacture. The method works on all materials via fast material removal, can be easily adapted for micropatterning of tubular or more complex sample shapes and scaled up by means of micropatterning of metal molds for manufacturing. Here, picosecond laser ablation was applied to a bioresorbable, biologically inactive and polyethylene glycol‐modified poly‐l‐lactide polymer (PEGylated PLLA) to generate parallel microgrooves with varying geometries. The different patterns were thoroughly evaluated by a series of cyto‐ and hemocompatibility tests revealing that all surfaces were non‐toxic and non‐hemolytic. More importantly, patterns with 20 to 25 µm wide and 6 to 7 µm deep grooves significantly enhanced endothelial cell adhesion in comparison to samples with smaller grooves. Here, human cardiac microvascular endothelial cells were found to align along the groove direction, which is thought to encourage endothelialization of intraluminal surfaces of BVS.
TERMIS European Chapter Meeting 2017 | 2017
Ayesha Idrees; Sandra Pacharra; Richard Viebahn; Gianluca Ciardelli; Valeria Chiono; Jochen Salber
Archive | 2017
Ayesha Idrees; Sandra Pacharra; Richard Viebahn; Gianluca Ciardelli; Valeria Chiono; Jochen Salber
Archive | 2017
Ayesha Idrees; Sandra Pacharra; L. Marlinghaus; Valeria Chiono; Gianluca Ciardelli; Jeddah Marie Vasquez; Udo Greiser; Wenxin Wang; Richard Viebahn; S.G. Gatermann; Jochen Salber
World Academy of Science, Engineering and Technology, International Journal of Biomedical and Biological Engineering | 2016
Irene Carmagnola; Valeria Chiono; Sandra Pacharra; Jochen Salber; Sean McMahon; Chris Lovell; Pooja Basnett; Barbara Lukasiewicz; Ipsita Roy; Xiang Zhang; Gianluca Ciardelli