Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra S. Wise is active.

Publication


Featured researches published by Sandra S. Wise.


Aquatic Toxicology | 2010

Silver nanospheres are cytotoxic and genotoxic to fish cells

John Pierce Wise; Britton C. Goodale; Sandra S. Wise; Gary Craig; Adam Pongan; Ronald B. Walter; W. Douglas Thompson; Ah-Kau Ng; AbouEl-Makarim Aboueissa; Hiroshi Mitani; Mark J. Spalding; Michael D. Mason

Nanoparticles are being widely investigated for a range of applications due to their unique physical properties. For example, silver nanoparticles are used in commercial products for their antibacterial and antifungal properties. Some of these products are likely to result in silver nanoparticles reaching the aquatic environment. As such, nanoparticles pose a health concern for humans and aquatic species. We used a medaka (Oryzias latipes) cell line to investigate the cytotoxicity and genotoxicity of 30nm diameter silver nanospheres. Treatments of 0.05, 0.3, 0.5, 3 and 5microg/cm(2) induced 80, 45.7, 24.3, 1 and 0.1% survival, respectively, in a colony forming assay. Silver nanoparticles also induced chromosomal aberrations and aneuploidy. Treatments of 0, 0.05, 0.1 and 0.3microg/cm(2) induced damage in 8, 10.8, 16 and 15.8% of metaphases and 10.8, 15.6, 24 and 24 total aberrations in 100 metaphases, respectively. These data show that silver nanoparticles are cytotoxic and genotoxic to fish cells.


Reviews on environmental health | 2008

Hexavalent Chromium-Induced DNA Damage and Repair Mechanisms

Sandra S. Wise; Amie L. Holmes; John Pierce Wise

Hexavalent chromium is a commonly used industrial metal that has been shown to induce lung cancer in workers having long term exposure. In the particulate form, Cr(VI) dissolves slowly in vivo, leading to an extended exposure of lung cells. Hexavalent chromium is taken into the cell and rapidly reduced to Cr(V), Cr(IV), Cr(III), and reactive oxygen species. Cells treated with Cr(VI) are subject to several types of DNA damage resulting from this reduction, including base modification, single-strand breaks, double-strand breaks, Cr-DNA adducts, DNA-Cr-DNA adducts, and protein-Cr-DNA adducts. These types of damage, if left unrepaired or are misrepaired, can lead to growth arrest, cytotoxicity, and apoptosis, as well as mutations leading to neoplastic transformation and ultimately tumorigenesis. Here we review the current literature on Cr-induced DNA damage and its repair.


Chemosphere | 2009

A global assessment of chromium pollution using sperm whales (Physeter macrocephalus) as an indicator species.

John Pierce Wise; Roger Payne; Sandra S. Wise; Carolyne LaCerte; James Wise; Christy Gianios; W. Douglas Thompson; Christopher Perkins; Tongzhang Zheng; Cairong Zhu; Lucille A. Benedict; Iain Kerr

Chromium (Cr) is a well-known human carcinogen and a potential reproductive toxicant, but its contribution to ocean pollution is poorly understood. The aim of this study was to provide a global baseline for Cr as a marine pollutant using the sperm whale (Physeter macrocephalus) as an indicator species. Biopsies were collected from free-ranging whales around the globe during the voyage of the research vessel The Odyssey. Total Cr levels were measured in 361 sperm whales collected from 16 regions around the globe detectable levels ranged from 0.9 to 122.6 microg Cr g tissue(-1) with a global mean of 8.8+/-0.9 microg g(-1). Two whales had undetectable levels. The highest levels were found in sperm whales sampled in the waters near the Islands of Kiribati in the Pacific (mean=44.3+/-14.4) and the Seychelles in the Indian Ocean (mean=19.5+/-5.4 microg g(-1)). The lowest mean levels were found in whales near the Canary Islands (mean=3.7+/-0.8 microg g(-1)) and off of the coast of Sri Lanka (mean=3.3+/-0.4 microg g(-1)). The global mean Cr level in whale skin was 28-times higher than mean Cr skin levels in humans without occupational exposure. The whale levels were more similar to levels only observed previously in human lung tissue from workers who died of Cr-induced lung cancer. We conclude that Cr pollution in the marine environment is significant and that further study is urgently needed.


Cancer Research | 2006

Chronic Exposure to Lead Chromate Causes Centrosome Abnormalities and Aneuploidy in Human Lung Cells

Amie L. Holmes; Sandra S. Wise; Sarah J. Sandwick; Wilma L. Lingle; Vivian Negron; W. Douglas Thompson; John Pierce Wise

Hexavalent chromium [Cr(VI)] compounds are established human lung carcinogens. The carcinogenicity of Cr(VI) is related to its solubility, with the most potent carcinogens being the insoluble particulate Cr(VI) compounds. However, it remains unknown why particulate Cr(VI) is more carcinogenic than soluble Cr(VI). One possible explanation is that particulates may provide more chronic exposures to chromate over time. We found that aneuploid cells increased in a concentration- and time-dependent manner after chronic exposure to lead chromate. Specifically, a 24-hour lead chromate exposure induced no aneugenic effect, whereas a 120-hour exposure to 0.5 and 1 microg/cm2 lead chromate induced 55% and 60% aneuploid metaphases, respectively. We also found that many of these aneuploid cells were able to continue to grow and form colonies. Centrosome defects are known to induce aneuploidy; therefore, we investigated the effects of chronic lead chromate exposure on centrosomes. We found that centrosome amplification in interphase and mitotic cells increased in a concentration- and time-dependent manner with 0.5 and 1 microg/cm2 lead chromate for 120 hours, inducing aberrant centrosomes in 18% and 21% of interphase cells and 32% and 69% of mitotic cells, respectively; however, lead oxide did not induce centrosome amplification in interphase or mitotic cells. There was also an increase in aberrant mitosis after chronic exposure to lead chromate with the emergence of disorganized anaphase and mitotic catastrophe. These data suggest that one possible mechanism for lead chromate-induced carcinogenesis is through centrosome dysfunction, leading to the induction of aneuploidy.


Chemical Research in Toxicology | 2010

Comparative genotoxicity and cytotoxicity of four hexavalent chromium compounds in human bronchial cells.

Sandra S. Wise; Amie L. Holmes; Qin Qin; Hong Xie; Spiros P. Katsifis; W. Douglas Thompson; John Pierce Wise

Hexavalent chromium (Cr(VI)) compounds are well-established human lung carcinogens. Solubility plays an important role in their carcinogenicity with the particulate Cr(VI) compounds being the most carcinogenic. Epidemiology and animal studies suggest that zinc chromate is the most potent particulate Cr(VI) compound; however, there are few comparative data to support these observations. The purpose of this study was to compare the genotoxicity of zinc chromate with two other particulate Cr(VI) compounds, barium chromate and lead chromate, and one soluble Cr(VI) compound, sodium chromate. The clastogenic effects of barium chromate and zinc chromate were similar, but lead chromate induced significantly less damage. The levels of DNA damage measured by gamma-H2A.X foci formation were similar for the three particulate chromium compounds. Corrected for chromium uptake differences, we found that zinc chromate and barium chromate were the most cytotoxic, and lead chromate and sodium chromate were less cytotoxic. Zinc chromate was more clastogenic than all other chromium compounds, and lead chromate was the least clastogenic. There was no significant difference between any of the compounds for the induction of DNA double strand breaks. All together, these data suggest that the difference in the carcinogenic potency of zinc chromate over the other chromium compounds is not due solely to a difference in chromium ion uptake and that the zinc cation may in fact have an important role in its carcinogenicity.


Mutation Research | 2012

Chromium and genomic stability

Sandra S. Wise; John Pierce Wise

Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There is no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as highly toxic and carcinogenic with no nutritional value. Recent data indicate that it causes genomic instability and also has no role in promoting genomic stability.


Environmental and Molecular Mutagenesis | 2009

Particulate hexavalent chromium is cytotoxic and genotoxic to the North Atlantic right whale (Eubalaena glacialis) lung and skin fibroblasts.

Tânia Li Chen; Sandra S. Wise; Scott D. Kraus; Fariba Shaffiey; Kaitlynn M. Levine; W. Douglas Thompson; Tracy Romano; Todd M. O'Hara; John Pierce Wise

Hexavalent chromium compounds are present in the atmosphere and oceans and are established mutagens and carcinogens in human and terrestrial mammals. However, the adverse effects of these toxicants in marine mammals are uncertain. Previously, we reported that North Atlantic right whales, one of the most endangered great whales, have tissue chromium levels that are high, levels that may pose a risk to the whales health. Furthermore, the study suggested that inhalation may be an important exposure route. Exposure to chromium through inhalation is mainly because of particulate compounds. However, the toxicity of particulate chromium compounds in marine mammal cells is unknown. Accordingly, in this study, we tested the cytotoxic and genotoxic effects of particulate hexavalent chromium in primary cultured lung and skin fibroblasts from the endangered North Atlantic right whale. Cytotoxicity was measured by clonogenic survival assay, and genotoxicity was measured as production of chromosome aberrations. Particulate hexavalent chromium induced cytotoxicity and genotoxicity in a concentration‐dependent manner in both right whale lung and skin fibroblasts. Lung fibroblasts were more resistant to chromium cytotoxicity, but presented with more chromosome damage than skin fibroblasts. These data further support the hypothesis that chromium may be a health concern for the endangered North Atlantic right whale. Environ. Mol. Mutagen. 2009.


Science of The Total Environment | 2013

Global mercury and selenium concentrations in skin from free-ranging sperm whales (Physeter macrocephalus)

Laura C. Savery; David C. Evers; Sandra S. Wise; Carolyne Falank; James Wise; Christy Gianios; Iain Kerr; Roger Payne; W. Douglas Thompson; Christopher Perkins; Tongzhang Zheng; Cairong Zhu; Lucille A. Benedict; John Pierce Wise

Pollution of the ocean by mercury (Hg) is a global concern. Hg persists, bioaccumulates and is toxic putting high trophic consumers at risk. The sperm whale (Physeter macrocephalus), is a sentinel of ocean health due to its wide distribution, longevity and high trophic level. Our aim was to survey Hg concentrations worldwide in the skin of free-ranging sperm whales considering region, gender and age. Samples were collected from 343 whales in 17 regions during the voyage of the research vessel, Odyssey, between 1999 and 2005. Skin was analyzed for total Hg and detected in all but three samples with a global mean of 2.5±0.1 μg g(-1) ranging from 0.1 to 16.0 μg g(-1). The Mediterranean Sea had the highest regional mean with 6.1 μg g(-1) followed by Australia with 3.5 μg g(-1). Considering gender, females and males did not have significantly different global Hg concentrations. The variation among regions for females was significantly different with highest levels in the Mediterranean and lowest in Sri Lanka; however, males were not significantly different among regions. Considering age in males, adults and subadults did not have significantly different Hg concentrations, and were not significantly different among regions. The toxic effects of these Hg concentrations are uncertain. Selenium (Se), an essential element, antagonizes Hg at equimolar amounts. We measured total Se concentrations and found detectable levels in all samples with a global mean of 33.1±1.1 μg g(-1) ranging from 2.5 to 179 μg g(-1). Se concentrations were found to be several fold higher than Hg concentrations with the average Se:Hg molar ratio being 59:1 and no correlation between the two elements. It is possible Hg is being detoxified in the skin by another mechanism. These data provide the first global analysis of Hg and Se concentrations in a free-ranging cetacean.


Aquatic Toxicology | 2009

Particulate and soluble hexavalent chromium are cytotoxic and genotoxic to Steller sea lion lung cells

Sandra S. Wise; Fariba Shaffiey; Carolyne LaCerte; Caroline E. C. Goertz; J. Lawrence Dunn; Frances M. D. Gulland; AbouEl-Makarim Aboueissa; Tongzhang Zheng; John Pierce Wise

Hexavalent chromium is an environmental contaminant. Within the environment, marine waters are a common site for hexavalent chromium deposition. We have recently reported significantly high levels of chromium in skin tissue from North Atlantic right whales. These findings demonstrate that marine species are being exposed to chromium. It is possible that such exposures may be playing a role in population declines evident among certain marine mammals, such as the Steller sea lion. We developed a Steller sea lion lung cell line from Steller sea lion lung tissue. Hexavalent chromium was cytotoxic to these primary lung fibroblasts as 1, 2.5, 5, 10 and 25microM sodium chromate induced 104, 99, 92, 58 and 11% relative survival, respectively. It was also genotoxic as 0, 1, 2.5, 5 and 10microM sodium chromate damaged chromosomes in 6, 11, 21, 36, and 39% of metaphases and damaged 6, 12, 27, 49 and 57 total aberrations in 100 metaphases, respectively. We also considered the toxicity of particulate hexavalent chromium, as it is the more potent carcinogen in humans. We found that 0.1, 0.5, 1, 5 and 10microg/cm(2) particulate chromate induced 95, 88, 91, 70, and 52% relative cell survival, respectively. These concentrations were genotoxic and damaged chromosomes in 9, 13, 18, and 23% of metaphases and induced 9, 15, 20 and 30 total aberrations per 100 metaphases, respectively. These data indicate that if sufficiently exposed, chromium may adversely affect the struggling Steller sea lion population. It would be prudent to investigate the effects chromium has in other Steller sea lion organs in order to derive a better understanding of how chromium in the marine environment may be affecting the declining Steller sea lion population.


Chemical Research in Toxicology | 2010

Chronic Exposure to Zinc Chromate Induces Centrosome Amplification and Spindle Assembly Checkpoint Bypass in Human Lung Fibroblasts

Amie L. Holmes; Sandra S. Wise; Stephen C. Pelsue; Abou El Makarim Aboueissa; Wilma L. Lingle; Jeffery L. Salisbury; Jamie Gallagher; John Pierce Wise

Hexavalent chromium (Cr(VI)) compounds are known human lung carcinogens. Solubility plays an important role in its carcinogenicity with the particulate or insoluble form being the most potent. Of the particulate Cr(VI) compounds, zinc chromate appears to be the most potent carcinogen; however, very few studies have investigated its carcinogenic mechanism. In this study, we investigated the ability of chronic exposure to zinc chromate to induce numerical chromosome instability. We found no increase in aneuploidy after a 24 h exposure to zinc chromate, but with more chronic exposures, zinc chromate induced concentration- and time-dependent increases in aneuploidy in the form of hypodiploidy, hyperdiploidy, and tetraploidy. Zinc chromate also induced centrosome amplification in a concentration- and time-dependent manner in both interphase and mitotic cells after chronic exposure, producing cells with centriolar defects. Furthermore, chronic exposure to zinc chromate induced concentration- and time-dependent increases in spindle assembly checkpoint bypass with increases in centromere spreading, premature centromere division, and premature anaphase. Last, we found that chronic exposure to zinc chromate induced a G2 arrest. All together, these data indicate that zinc chromate can induce chromosome instability after prolonged exposures.

Collaboration


Dive into the Sandra S. Wise's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Douglas Thompson

University of Southern Maine

View shared research outputs
Top Co-Authors

Avatar

Amie L. Holmes

University of Southern Maine

View shared research outputs
Top Co-Authors

Avatar

Hong Xie

University of Bridgeport

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Wise

University of Southern Maine

View shared research outputs
Top Co-Authors

Avatar

Christy Gianios

University of Southern Maine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyne LaCerte

University of Southern Maine

View shared research outputs
Researchain Logo
Decentralizing Knowledge