Sandra Urbanelli
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Urbanelli.
Heredity | 2000
Sandra Urbanelli; Romeo Bellini; Marco Carrieri; Pina Sallicandro; Giorgio Celli
Multilocus electrophoresis analysis has been used to study the genetic structure of 18 populations of Aedes albopictus newly introduced to Italy, in comparison with two populations in the United States, four in Japan, and four in Indonesia. Allozyme analysis revealed that 15 out of the 18 studied loci were polymorphic among the 28 populations. No significant deviations from Hardy–Weinberg equilibrium were found at polymorphic loci. High genetic affinity was observed between the Italian populations and those from the United States and Japan. The analysis of variance in allele frequencies showed that variance among subpopulations accounted for most of the total variance, suggesting that isolation of the Italian populations is not related to distance. Analysis of linkage disequilibrium using Ohta’s method shows that the variance in the frequency of allele combinations could be explained by the action of the genetic drift which accompanies the establishment of new populations. The colonization process of Ae. albopictus in Italy is following a trend similar to that previously observed in the U.S.A., probably because both infestations derive from several successive introductions, each with large numbers of individuals.
Parasites & Vectors | 2013
Daniele Porretta; Valentina Mastrantonio; Sara Amendolia; Stefano Gaiarsa; Sara Epis; Claudio Genchi; Claudio Bandi; Domenico Otranto; Sandra Urbanelli
BackgroundGlobal climate change can seriously impact on the epidemiological dynamics of vector-borne diseases. In this study we investigated how future climatic changes could affect the climatic niche of Ixodes ricinus (Acari, Ixodida), among the most important vectors of pathogens of medical and veterinary concern in Europe.MethodsSpecies Distribution Modelling (SDM) was used to reconstruct the climatic niche of I. ricinus, and to project it into the future conditions for 2050 and 2080, under two scenarios: a continuous human demographic growth and a severe increase of gas emissions (scenario A2), and a scenario that proposes lower human demographic growth than A2, and a more sustainable gas emissions (scenario B2). Models were reconstructed using the algorithm of “maximum entropy”, as implemented in the software Maxent 3.3.3e; 4,544 occurrence points and 15 bioclimatic variables were used.ResultsIn both scenarios an increase of climatic niche of about two times greater than the current area was predicted as well as a higher climatic suitability under the scenario B2 than A2. Such an increase occurred both in a latitudinal and longitudinal way, including northern Eurasian regions (e.g. Sweden and Russia), that were previously unsuitable for the species.ConclusionsOur models are congruent with the predictions of range expansion already observed in I. ricinus at a regional scale and provide a qualitative and quantitative assessment of the future climatically suitable areas for I. ricinus at a continental scale. Although the use of SDM at a higher resolution should be integrated by a more refined analysis of further abiotic and biotic data, the results presented here suggest that under future climatic scenarios most of the current distribution area of I. ricinus could remain suitable and significantly increase at a continental geographic scale. Therefore disease outbreaks of pathogens transmitted by this tick species could emerge in previous non-endemic geographic areas. Further studies will implement and refine present data toward a better understanding of the risk represented by I. ricinus to human health.
Medical and Veterinary Entomology | 2008
Daniele Porretta; M. Gargani; R. Bellini; A. Medici; F. Punelli; Sandra Urbanelli
Abstract P‐glycoproteins (P‐gps) are efflux transporters found in cells of a broad range of both procaryotic and eukaryotic taxa, whose action is to relieve the cells of multiple, structurally dissimilar, toxic compounds. The possible role of P‐gps in defence against the insecticides temephos and diflubenzuron was investigated in the mosquito Aedes caspius (Pallas), also known as Ochlerotatus (Aedes) caspius (Diptera: Culicidae), and the genomic DNA sequences encoding for P‐gp transporters were isolated to provide molecular instruments for future research into the expression and characterization of genes codifying for P‐gps in this mosquito species.
PLOS ONE | 2012
Daniele Porretta; Valentina Mastrantonio; Romeo Bellini; Pradya Somboon; Sandra Urbanelli
Background The tiger mosquito, Aedes albopictus, is one of the 100 most invasive species in the world and a vector of human diseases. In the last 30 years, it has spread from its native range in East Asia to Africa, Europe, and the Americas. Although this modern invasion has been the focus of many studies, the history of the species’ native populations remains poorly understood. Here, we aimed to assess the role of Pleistocene climatic changes in shaping the current distribution of the species in its native range. Methodology/Principal Findings We investigated the phylogeography, historical demography, and species distribution of Ae. albopictus native populations at the Last Glacial Maximum (LGM). Individuals from 16 localities from East Asia were analyzed for sequence variation at two mitochondrial genes. No phylogeographic structure was observed across the study area. Demographic analyses showed a signature of population expansion that started roughly 70,000 years BP. The occurrence of a continuous and climatically suitable area comprising Southeast China, Indochinese Peninsula, and Sundaland during LGM was indicated by species distribution modelling. Conclusions/Significance Our results suggest an evolutionary scenario in which, during the last glacial phase, Ae. albopictus did not experience a fragmentation phase but rather persisted in interconnected populations and experienced demographic growth. The wide ecological flexibility of the species probably played a crucial role in its response to glacial-induced environmental changes. Currently, there is little information on the impact of Pleistocene climatic changes on animal species in East Asia. Most of the studies focused on forest-associated species and suggested cycles of glacial fragmentation and post-glacial expansion. The case of Ae. albopictus, which exhibits a pattern not previously observed in the study area, adds an important piece to our understanding of the Pleistocene history of East Asian biota.
Journal of Medical Entomology | 2010
Romeo Bellini; Alessandro Albieri; Fabrizio Balestrino; Marco Carrieri; Daniele Porretta; Sandra Urbanelli; Maurizio Calvitti; Riccardo Moretti; Stefano Maini
ABSTRACT The dispersal and survival of laboratory-reared Aedes albopictus Skuse males were investigated during the summer of 2007 in three Northern Italy urban localities by mark-release-recapture techniques. Two marking methods were compared: one group of males was dusted with fluorescent pigments on the body (FP), and the other group was obtained from a strain whose natural infection of Wolbachia had been removed (WB0). FP- and WB0-marked males were released as adults and pupae, respectively, in one fixed station at each locality. Recaptures were performed by skilled technicians, within a radius of 350 m from the release site, on days 4, 5, and 7 after the release, and the males were collected while flying around the technicians body or in swarms. Recapture rates ranged from 0.63 to 4.72% for FP males and from 2.39 to 11.05% for WB0 males. The mean distance traveled for WBO males was significantly higher than for FP males; no difference was observed between the dispersal distance measured for the males recaptured on human host versus males recaptured while swarming. No further increase of the dispersal occurred during the postrelease period investigated (from day 4 to day 7 after release). The mean survival rate at the release was 0.51 for FP-marked males and 0.81 for WBO males. The data obtained are discussed for their significance in planning sterile insect technique programs against Ae. albopictus.
Applied Microbiology and Biotechnology | 2007
Sandra Urbanelli; V. Della Rosa; Federico Punelli; D. Porretta; Massimo Reverberi; Anna Adele Fabbri; Corrado Fanelli
Wild populations of edible species are important source of genetic variability for cultivated lines that can undergo a drastic loss of diversity resulting from man’s selection. The development of tools aimed at the clear-cut and safe identification and assessment of genetic variability of the wild and cultivated strains is thus a fundamental goal of molecular genetic research. In this study, we used two polymerase chain reaction (PCR)-based fingerprinting methods—amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) of laccase and manganese peroxidase genes—to assess genetic differences among strains and independently evolving lineages belonging to the Pleurotus eryngii complex. Both laccase RFLP and AFLP have been proved to distinguish unambiguously the three taxa studied: Pleurotus ferulae, P. eryngii, and P. eryngii var. nebrodensis. AFLP also showed enough sensitivity to detect polymorphisms among the strains, proving to be an efficient DNA fingerprinting tool in studies of strain assignment. The divergent RFLP laccase and manganese peroxidase patterns are also discussed in relation to the role played by these genes in the interaction between these fungi and their host plants.
Parasites & Vectors | 2013
Chiara Bazzocchi; Mara Mariconti; Davide Sassera; Laura Rinaldi; Elena Martin; Giuseppe Cringoli; Sandra Urbanelli; Claudio Genchi; Claudio Bandi; Sara Epis
BackgroundThe Midichloriaceae is a novel family of the order Rickettsiales, that encompasses intracellular bacteria associated with hard ticks (Ixodidae) and other arthropods. The most intensively investigated member of this family is Midichloria mitochondrii, a symbiotic bacterium of the sheep tick Ixodes ricinus, characterized by the capacity of multiplying inside the mitochondria. A recent study suggested that these bacteria might be inoculated into the human host during the tick bite. The purpose of this study was to determine the potential infectivity of Midichloria bacteria for non-human animals exposed to the risk of tick bite.MethodsBlood from horses, cattle, sheep and dogs exposed to the risk of tick bite was included in this study. DNAs were extracted, and amplified using 16S ribosomal RNA primers conserved in the Midichloria genus. Furthermore, sera from dogs exposed to the risk of tick bite were analyzed in order to evaluate the presence of antibodies against the recombinant flagellar protein (rFliD) from M. mitochondrii using an ELISA test.ResultsHere we present two lines of evidence that support the possibility that bacteria from the genus Midichloria are inoculated into vertebrate hosts during a tick bite: (i) a direct evidence, i.e. the detection of circulating DNA from bacteria related with M. mitochondrii, in the blood of vertebrates exposed to tick parasitism; (ii) a further indirect evidence, i.e. the presence of antibodies against an antigen from M. mitochondrii in dogs exposed to the risk of tick bite. It is interesting to note that variability was detected in the Midichloria gene sequences recovered from positive animals, and that some of these sequences were identical to those generated from tick-associated Midichloria.ConclusionsBased on the results, and on the overall information so far published on the genus Midichloria, we suggest that these bacteria are likely to represent a novel group of vector-borne agents, with the potential of infecting mammalian hosts. Whether inoculation of Midichloria bacteria could cause a true infection and pathological alteration in mammalian hosts is still to be determined. Surely, results emphasize the relevance of Midichloria bacteria in investigations on tick immunology and tick-bite markers.
Evolution | 2008
Sandra Urbanelli; Daniele Porretta
Abstract The increase in premating reproductive isolation between recently diverged and potentially interbreeding taxa resulting from selection against hybridization (reinforcement) is one of the most contentious issues in evolutionary biology. After many years of debate, its plausibility under various conditions has been shown by theoretical studies and some cases have been documented. At present, interest is arising about the frequency and importance of reinforcement in nature. Ochthebius quadricollis and Ochthebius sp. A are two hydraenid beetles inhabiting marine rock pools in the Mediterranean basin. By molecular analysis of a contact zone between the two species along the Italian Tyrrhenian coast, full reproductive isolation between the two species was evidenced. However, the finding of introgressed specimens at some diagnostic loci suggested that gene flow occurred in the past but then ceased. In this article, by analyzing species composition of mating couples collected in sympatric localities, we show the existence of strong assortative mating between the two species in nature. In laboratory multiple-choice mating trials, sympatric populations showed greater assortative mating than allopatric populations. Reinforcement is suggested as the most parsimonious hypothesis to explain the evolution of discriminative mate recognition systems occurring among O. quadricollis and Ochthebius sp. A under sympatric, but not allopatric, populations.
Heredity | 2003
Sandra Urbanelli; V. Della Rosa; C. Fanelli; A. A. Fabbri; Massimo Reverberi
A study using allozymes and PCR fingerprinting was conducted to estimate the genetic diversity of Italian populations of two economically important cultivated fungal taxa, Pleurotus eryngii and P. ferulae. Very little is known about the genetic diversity distribution pattern of these taxa. Heterozygote deficiency was observed at few loci; in fact the inbreeding coefficients were not high, which demonstrates that mechanisms restrain the inbreeding act at the local level. Estimates of genetic differentiation indicated a pattern of greater variation within, rather than between, populations. These results were supported by AMOVA analysis, which attributed a low proportion of the total genetic variation to large geographical scale divergence, and indicated that most of the genetic diversity was because of differences within populations. This distribution pattern of genetic variation of P. eryngii and P. ferulae populations seems to be the result of high gene flow, by efficient basidiospore dispersal, and outcrossing mechanisms, which restrain inbreeding within populations.
Molecular Ecology | 2013
Daniele Porretta; Valentina Mastrantonio; Stefano Mona; Sara Epis; Matteo Montagna; Davide Sassera; Claudio Bandi; Sandra Urbanelli
In the last few years, improved analytical tools and the integration of genetic data with multiple sources of information have shown that temperate species exhibited more complex responses to ice ages than previously thought. In this study, we investigated how Pleistocene climatic changes affected the current distribution and genetic diversity of European populations of the tick Ixodes ricinus, an ectoparasite with high ecological plasticity. We first used mitochondrial and nuclear genetic markers to investigate the phylogeographic structure of the species and its Pleistocene history using coalescent‐based methods; then we used species distribution modelling to infer the climatic niche of the species at last glacial maximum; finally, we reviewed the literature on the I. ricinus hosts to identify the locations of their glacial refugia. Our results support the scenario that during the last glacial phase, I. ricinus never experienced a prolonged allopatric divergence in separate glacial refugia, but persisted with interconnected populations across Southern and Central Europe. The generalist behaviour in host choice of I. ricinus would have played a major role in maintaining connections between its populations. Although most of the hosts persisted in separate refugia, from the point of view of I. ricinus, they represented a continuity of ‘bridges’ among populations. Our study highlights the importance of species‐specific ecology in affecting responses to Pleistocene glacial–interglacial cycles. Together with other cases in Europe and elsewhere, it contributes to setting new hypotheses on how species with wide ecological plasticity coped with Pleistocene climatic changes.