Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentina Mastrantonio is active.

Publication


Featured researches published by Valentina Mastrantonio.


Parasites & Vectors | 2013

Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling.

Daniele Porretta; Valentina Mastrantonio; Sara Amendolia; Stefano Gaiarsa; Sara Epis; Claudio Genchi; Claudio Bandi; Domenico Otranto; Sandra Urbanelli

BackgroundGlobal climate change can seriously impact on the epidemiological dynamics of vector-borne diseases. In this study we investigated how future climatic changes could affect the climatic niche of Ixodes ricinus (Acari, Ixodida), among the most important vectors of pathogens of medical and veterinary concern in Europe.MethodsSpecies Distribution Modelling (SDM) was used to reconstruct the climatic niche of I. ricinus, and to project it into the future conditions for 2050 and 2080, under two scenarios: a continuous human demographic growth and a severe increase of gas emissions (scenario A2), and a scenario that proposes lower human demographic growth than A2, and a more sustainable gas emissions (scenario B2). Models were reconstructed using the algorithm of “maximum entropy”, as implemented in the software Maxent 3.3.3e; 4,544 occurrence points and 15 bioclimatic variables were used.ResultsIn both scenarios an increase of climatic niche of about two times greater than the current area was predicted as well as a higher climatic suitability under the scenario B2 than A2. Such an increase occurred both in a latitudinal and longitudinal way, including northern Eurasian regions (e.g. Sweden and Russia), that were previously unsuitable for the species.ConclusionsOur models are congruent with the predictions of range expansion already observed in I. ricinus at a regional scale and provide a qualitative and quantitative assessment of the future climatically suitable areas for I. ricinus at a continental scale. Although the use of SDM at a higher resolution should be integrated by a more refined analysis of further abiotic and biotic data, the results presented here suggest that under future climatic scenarios most of the current distribution area of I. ricinus could remain suitable and significantly increase at a continental geographic scale. Therefore disease outbreaks of pathogens transmitted by this tick species could emerge in previous non-endemic geographic areas. Further studies will implement and refine present data toward a better understanding of the risk represented by I. ricinus to human health.


PLOS ONE | 2012

Glacial History of a Modern Invader: Phylogeography and Species Distribution Modelling of the Asian Tiger Mosquito Aedes albopictus

Daniele Porretta; Valentina Mastrantonio; Romeo Bellini; Pradya Somboon; Sandra Urbanelli

Background The tiger mosquito, Aedes albopictus, is one of the 100 most invasive species in the world and a vector of human diseases. In the last 30 years, it has spread from its native range in East Asia to Africa, Europe, and the Americas. Although this modern invasion has been the focus of many studies, the history of the species’ native populations remains poorly understood. Here, we aimed to assess the role of Pleistocene climatic changes in shaping the current distribution of the species in its native range. Methodology/Principal Findings We investigated the phylogeography, historical demography, and species distribution of Ae. albopictus native populations at the Last Glacial Maximum (LGM). Individuals from 16 localities from East Asia were analyzed for sequence variation at two mitochondrial genes. No phylogeographic structure was observed across the study area. Demographic analyses showed a signature of population expansion that started roughly 70,000 years BP. The occurrence of a continuous and climatically suitable area comprising Southeast China, Indochinese Peninsula, and Sundaland during LGM was indicated by species distribution modelling. Conclusions/Significance Our results suggest an evolutionary scenario in which, during the last glacial phase, Ae. albopictus did not experience a fragmentation phase but rather persisted in interconnected populations and experienced demographic growth. The wide ecological flexibility of the species probably played a crucial role in its response to glacial-induced environmental changes. Currently, there is little information on the impact of Pleistocene climatic changes on animal species in East Asia. Most of the studies focused on forest-associated species and suggested cycles of glacial fragmentation and post-glacial expansion. The case of Ae. albopictus, which exhibits a pattern not previously observed in the study area, adds an important piece to our understanding of the Pleistocene history of East Asian biota.


Molecular Ecology | 2013

The integration of multiple independent data reveals an unusual response to Pleistocene climatic changes in the hard tick Ixodes ricinus

Daniele Porretta; Valentina Mastrantonio; Stefano Mona; Sara Epis; Matteo Montagna; Davide Sassera; Claudio Bandi; Sandra Urbanelli

In the last few years, improved analytical tools and the integration of genetic data with multiple sources of information have shown that temperate species exhibited more complex responses to ice ages than previously thought. In this study, we investigated how Pleistocene climatic changes affected the current distribution and genetic diversity of European populations of the tick Ixodes ricinus, an ectoparasite with high ecological plasticity. We first used mitochondrial and nuclear genetic markers to investigate the phylogeographic structure of the species and its Pleistocene history using coalescent‐based methods; then we used species distribution modelling to infer the climatic niche of the species at last glacial maximum; finally, we reviewed the literature on the I. ricinus hosts to identify the locations of their glacial refugia. Our results support the scenario that during the last glacial phase, I. ricinus never experienced a prolonged allopatric divergence in separate glacial refugia, but persisted with interconnected populations across Southern and Central Europe. The generalist behaviour in host choice of I. ricinus would have played a major role in maintaining connections between its populations. Although most of the hosts persisted in separate refugia, from the point of view of I. ricinus, they represented a continuity of ‘bridges’ among populations. Our study highlights the importance of species‐specific ecology in affecting responses to Pleistocene glacial–interglacial cycles. Together with other cases in Europe and elsewhere, it contributes to setting new hypotheses on how species with wide ecological plasticity coped with Pleistocene climatic changes.


Parasites & Vectors | 2014

ABC transporters are involved in defense against permethrin insecticide in the malaria vector Anopheles stephensi

Sara Epis; Daniele Porretta; Valentina Mastrantonio; Francesco Comandatore; Davide Sassera; Paolo Rossi; Claudia Cafarchia; Domenico Otranto; Guido Favia; Claudio Genchi; Claudio Bandi; Sandra Urbanelli

BackgroundProteins from the ABC family (ATP-binding cassette) represent the largest known group of efflux pumps, responsible for transporting specific molecules across lipid membranes in both prokaryotic and eukaryotic organisms. In arthropods they have been shown to play a role in insecticide defense/resistance. The presence of ABC transporters and their possible association with insecticide transport have not yet been investigated in the mosquito Anopheles stephensi, the major vector of human malaria in the Middle East and South Asian regions. Here we investigated the presence and role of ABCs in transport of permethrin insecticide in a susceptible strain of this mosquito species.MethodsTo identify ABC transporter genes we obtained a transcriptome from untreated larvae of An. stephensi and then compared it with the annotated transcriptome of Anopheles gambiae. To analyse the association between ABC transporters and permethrin we conducted bioassays with permethrin alone and in combination with an ABC inhibitor, and then we investigated expression profiles of the identified genes in larvae exposed to permethrin.ResultsBioassays showed an increased mortality of mosquitoes when permethrin was used in combination with the ABC-transporter inhibitor. Genes for ABC transporters were detected in the transcriptome, and five were selected (Anst ABCB2, Anst ABCB3, Anst ABCB4, Anst ABCmember6 and Anst ABCG4). An increased expression in one of them (Anst ABCG4) was observed in larvae exposed to the LD50 dose of permethrin. Contrary to what was found in other insect species, no up-regulation was observed in the Anst ABCB genes.ConclusionsOur results show for the first time the involvement of ABC transporters in larval defense against permethrin in An. stephensi and, more in general, confirm the role of ABC transporters in insecticide defense. The differences observed with previous studies highlight the need of further research as, despite the growing number of studies on ABC transporters in insects, the heterogeneity of the results available at present does not allow us to infer general trends in ABC transporter-insecticide interactions.


Scientific Reports | 2015

Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi

Sara Epis; Daniele Porretta; Valentina Mastrantonio; Sandra Urbanelli; Davide Sassera; Leone De Marco; Valeria Mereghetti; Matteo Montagna; Irene Ricci; Guido Favia; Claudio Bandi

In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABC gene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps.


Medical and Veterinary Entomology | 2015

Potential role of ATP-binding cassette transporters against acaricides in the brown dog tick Rhipicephalus sanguineus sensu lato

Claudia Cafarchia; Daniele Porretta; Valentina Mastrantonio; Sara Epis; Davide Sassera; R. Iatta; D. Immediato; R. A. N. Ramos; Riccardo Paolo Lia; Filipe Dantas-Torres; L. Kramer; Sandra Urbanelli; Domenico Otranto

ATP‐binding cassette (ABC) transporters have been shown to be involved in pesticide detoxification in arthropod vectors and are thought to contribute to the development of drug resistance. Little is currently known about the role they play in ticks, which are among the more important vectors of human and animal pathogens. Here, the role of ABC transporters in the transport of fipronil and ivermectin acaricides in the tick Rhipicephalus sanguineus (Ixodida: Ixodidae) was investigated. Larvae were treated with acaricide alone and acaricide in combination with a sub‐lethal dose of the ABC transporter inhibitor cyclosporine A. The LC50 doses and 95% confidence intervals (CIs) estimated by mortality data using probit analysis were 67.930 p.p.m. (95% CI 53.780–90.861) for fipronil and 3741 p.p.m. (95% CI 2857–4647) for ivermectin. The pre‐exposure of larvae to a sub‐lethal dose of cyclosporine A reduced the LC50 dose of fipronil to 4.808 p.p.m. (95% CI 0.715–9.527) and that of ivermectin to 167 p.p.m. (95% CI 15–449), which increased toxicity by about 14‐ and 22‐fold, respectively. The comparison of mortality data for each separate acaricide concentration showed the synergic effect of cyclosporine A to be reduced at higher concentrations of acaricide. These results show for the first time a strong association between ABC transporters and acaricide detoxification in R.sanguineus s.l.


Evolution | 2014

HYBRIDIZATION, NATURAL SELECTION, AND EVOLUTION OF REPRODUCTIVE ISOLATION: A 25-YEARS SURVEY OF AN ARTIFICIAL SYMPATRIC AREA BETWEEN TWO MOSQUITO SIBLING SPECIES OF THE Aedes mariae COMPLEX

Sandra Urbanelli; Daniele Porretta; Valentina Mastrantonio; Romeo Bellini; Giuseppe Pieraccini; Riccardo Romoli; Graziano Crasta; Giuseppe Nascetti

Natural selection can act against maladaptive hybridization between co‐occurring divergent populations leading to evolution of reproductive isolation among them. A critical unanswered question about this process that provides a basis for the theory of speciation by reinforcement, is whether natural selection can cause hybridization rates to evolve to zero. Here, we investigated this issue in two sibling mosquitoes species, Aedes mariae and Aedes zammitii, that show postmating reproductive isolation (F1 males sterile) and partial premating isolation (different height of mating swarms) that could be reinforced by natural selection against hybridization. In 1986, we created an artificial sympatric area between the two species and sampled about 20,000 individuals over the following 25 years. Between 1986 and 2011, the composition of mating swarms and the hybridization rate between the two species were investigated across time in the sympatric area. Our results showed that A. mariae and A. zammitii have not completed reproductive isolation since their first contact in the artificial sympatric area. We have discussed the relative role of factors such as time of contact, gene flow, strength of natural selection, and biological mechanisms causing prezygotic isolation to explain the observed results.


Scientific Reports | 2016

Dynamics of mtDNA introgression during species range expansion: insights from an experimental longitudinal study

Valentina Mastrantonio; Daniele Porretta; Sandra Urbanelli; Graziano Crasta; Giuseppe Nascetti

Introgressive hybridization represents one of the long-lasting debated genetic consequences of species range expansion. Mitochondrial DNA has been shown to heavily introgress between interbreeding animal species that meet in new sympatric areas and, often, asymmetric introgression from local to the colonizing populations has been observed. Disentangling among the evolutionary and ecological processes that might shape this pattern remains difficult, because they continuously act across time and space. In this context, long-term studies can be of paramount importance. Here, we investigated the dynamics of mitochondrial introgression between two mosquito species (Aedes mariae and Ae. zammitii ) during a colonization event that started in 1986 after a translocation experiment. By analyzing 1,659 individuals across 25 years, we showed that introgression occurred earlier and at a higher frequency in the introduced than in the local species, showing a pattern of asymmetric introgression. Throughout time, introgression increased slowly in the local species, becoming reciprocal at most sites. The rare opportunity to investigate the pattern of introgression across time during a range expansion along with the characteristics of our study-system allowed us to support a role of demographic dynamics in determining the observed introgression pattern.


Scientific Reports | 2017

The choreography of the chemical defensome response to insecticide stress: insights into the Anopheles stephensi transcriptome using RNA-Seq

Leone De Marco; Davide Sassera; Sara Epis; Valentina Mastrantonio; Marco Ferrari; Irene Ricci; Francesco Comandatore; Claudio Bandi; Daniele Porretta; Sandra Urbanelli

Animals respond to chemical stress with an array of gene families and pathways termed “chemical defensome”. In arthropods, despite many defensome genes have been detected, how their activation is arranged during toxic exposure remains poorly understood. Here, we sequenced the transcriptome of Anopheles stephensi larvae exposed for six, 24 and 48 hours to the LD50 dose of the insecticide permethrin to monitor transcriptional changes of defensome genes across time. A total of 177 genes involved in insecticide defense were differentially expressed (DE) in at least one time-point, including genes encoding for Phase 0, I, II, III and antioxidant enzymes and for Heat Shock and Cuticular Proteins. Three major patterns emerged throughout time. First, most of DE genes were down-regulated at all time-points, suggesting a reallocation of energetic resources during insecticide stress. Second, single genes and clusters of genes turn off and on from six to 48 hours of treatment, showing a modulated response across time. Third, the number of up-regulated genes peaked at six hours and then decreased during exposure. Our results give a first picture of how defensome gene families respond against toxicants and provide a valuable resource for understanding how defensome genes work together during insecticide stress.


Acta Tropica | 2016

How heterogeneous is the involvement of ABC transporters against insecticides

Daniele Porretta; Sara Epis; Valentina Mastrantonio; Marco Ferrari; Romeo Bellini; G. Favia; Sandra Urbanelli

Understanding the molecular mechanisms underlying cellular defense against xenobiotic compounds is a main research issue in medical and veterinary entomology, as insecticide/acaricide resistance is a major threat in the control of arthropods. ABC transporters are recognized as a component of the detoxifying mechanism in arthropods. We investigated the possible involvement of ABC transporters in defense to the organophosphate insecticide temephos in the malarial vector Anopheles stephensi. We performed bioassays on larvae of An. stephensi, using insecticide alone and in combination with ABC-transporter inhibitors, to assess synergism between these compounds. Next, we investigated the expression profiles of six ABC transporter genes in larvae exposed to temephos. Surprisingly, neither bioassays nor gene expression analyses provided any evidence for a major role of ABC transporters in defense against temephos in An. stephensi. We thus decided to review existing literature to generate a record of other studies that failed to reveal a role for ABC transporters against particular insecticides/acaricides. A review of the scientific literature led to the recovery of 569 papers about ABC transporters; among these, 50 involved arthropods, and 10 reported negative results. Our study on An. stephensi and accompanying literature review highlight the heterogeneity that exists in ABC transporter involvement in defense/resistance mechanisms in arthropods.

Collaboration


Dive into the Valentina Mastrantonio's collaboration.

Top Co-Authors

Avatar

Daniele Porretta

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Sandra Urbanelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Romeo Bellini

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Favia

University of Camerino

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge