Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Van Aert is active.

Publication


Featured researches published by Sandra Van Aert.


Nature | 2011

Three-dimensional atomic imaging of crystalline nanoparticles

Sandra Van Aert; Kees Joost Batenburg; Marta D. Rossell; Rolf Erni; Gustaaf Van Tendeloo

Determining the three-dimensional (3D) arrangement of atoms in crystalline nanoparticles is important for nanometre-scale device engineering and also for applications involving nanoparticles, such as optoelectronics or catalysis. A nanoparticle’s physical and chemical properties are controlled by its exact 3D morphology, structure and composition. Electron tomography enables the recovery of the shape of a nanoparticle from a series of projection images. Although atomic-resolution electron microscopy has been feasible for nearly four decades, neither electron tomography nor any other experimental technique has yet demonstrated atomic resolution in three dimensions. Here we report the 3D reconstruction of a complex crystalline nanoparticle at atomic resolution. To achieve this, we combined aberration-corrected scanning transmission electron microscopy, statistical parameter estimation theory and discrete tomography. Unlike conventional electron tomography, only two images of the target—a silver nanoparticle embedded in an aluminium matrix—are sufficient for the reconstruction when combined with available knowledge about the particle’s crystallographic structure. Additional projections confirm the reliability of the result. The results we present help close the gap between the atomic resolution achievable in two-dimensional electron micrographs and the coarser resolution that has hitherto been obtained by conventional electron tomography.


Nano Letters | 2011

Three-dimensional atomic imaging of colloidal core-shell nanocrystals

Sara Bals; Marianna Casavola; Marijn A. van Huis; Sandra Van Aert; K. Joost Batenburg; Gustaaf Van Tendeloo; Daniël Vanmaekelbergh

Colloidal core-shell semiconductor nanocrystals form an important class of optoelectronic materials, in which the exciton wave functions can be tailored by the atomic configuration of the core, the interfacial layers, and the shell. Here, we provide a trustful 3D characterization at the atomic scale of a free-standing PbSe(core)-CdSe(shell) nanocrystal by combining electron microscopy and discrete tomography. Our results yield unique insights for understanding the process of cation exchange, which is widely employed in the synthesis of core-shell nanocrystals. The study that we present is generally applicable to the broad range of colloidal heteronanocrystals that currently emerge as a new class of materials with technological importance.


Advanced Materials | 2012

Direct Observation of Ferrielectricity at Ferroelastic Domain Boundaries in CaTiO3 by Electron Microscopy

Sandra Van Aert; Stuart Turner; Rémi Delville; Dominique Schryvers; Gustaaf Van Tendeloo; Ekhard K. H. Salje

High-resolution aberration-corrected transmission electron microscopy aided by statistical parameter estimation theory is used to quantify localized displacements at a (110) twin boundary in orthorhombic CaTiO(3). The displacements are 3-6 pm for the Ti atoms and confined to a thin layer. This is the first direct observation of the generation of ferroelectricity by interfaces inside this material which opens the door for domain boundary engineering.


Advanced Structural and Chemical Imaging | 2015

Smart Align—a new tool for robust non-rigid registration of scanning microscope data

Lewys Jones; Hao Yang; Timothy J. Pennycook; Matthew J. Marshall; Sandra Van Aert; Nigel D. Browning; Martin R. Castell; Peter D. Nellist

Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias-voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the careful alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.


Advanced Materials | 2012

Advanced Electron Microscopy for Advanced Materials

Gustaaf Van Tendeloo; Sara Bals; Sandra Van Aert; Jo Verbeeck; Dirk Van Dyck

The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.


Journal of the American Chemical Society | 2017

Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange

Ward van der Stam; Jaco J. Geuchies; Thomas Altantzis; Karel Hendrik Wouter van den Bos; Johannes D. Meeldijk; Sandra Van Aert; Sara Bals; Daniel Vanmaekelbergh; Celso de Mello Donegá

Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1–xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 < x ≤ 0.1), with preservation of the original NC shape. The size of the parent NCs is also preserved in the product NCs, apart from a small (few %) contraction of the unit cells upon incorporation of the guest cations. The partial Pb2+ for M2+ exchange leads to a blue-shift of the optical spectra, while maintaining the high photoluminescence quantum yields (>50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs.


Nano Letters | 2013

Three-Dimensional Elemental Mapping at the Atomic Scale in Bimetallic Nanocrystals

Bart Goris; Annick De Backer; Sandra Van Aert; Sergio Gómez-Graña; Luis M. Liz-Marzán; Gustaaf Van Tendeloo; Sara Bals

A thorough understanding of the three-dimensional (3D) atomic structure and composition of core-shell nanostructures is indispensable to obtain a deeper insight on their physical behavior. Such 3D information can be reconstructed from two-dimensional (2D) projection images using electron tomography. Recently, different electron tomography techniques have enabled the 3D characterization of a variety of nanostructures down to the atomic level. However, these methods have all focused on the investigation of nanomaterials containing only one type of chemical element. Here, we combine statistical parameter estimation theory with compressive sensing based tomography to determine the positions and atom type of each atom in heteronanostructures. The approach is applied here to investigate the interface in core-shell Au@Ag nanorods but it is of great interest in the investigation of a broad range of nanostructures.


Nature Materials | 2016

In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals

Jaco J. Geuchies; Carlo van Overbeek; W Wiel Evers; Bart Goris; Annick De Backer; Anjan P. Gantapara; Freddy T. Rabouw; Jan Hilhorst; Joep L. Peters; Oleg Konovalov; Andrei V. Petukhov; Marjolein Dijkstra; Laurens D. A. Siebbeles; Sandra Van Aert; Sara Bals; Daniel Vanmaekelbergh

Oriented attachment of PbSe nanocubes can result in the formation of two-dimensional (2D) superstructures with long-range nanoscale and atomic order. This questions the applicability of classic models in which the superlattice grows by first forming a nucleus, followed by sequential irreversible attachment of nanocrystals, as one misaligned attachment would disrupt the 2D order beyond repair. Here, we demonstrate the formation mechanism of 2D PbSe superstructures with square geometry by using in situ grazing-incidence X-ray scattering (small angle and wide angle), ex situ electron microscopy, and Monte Carlo simulations. We observed nanocrystal adsorption at the liquid/gas interface, followed by the formation of a hexagonal nanocrystal monolayer. The hexagonal geometry transforms gradually through a pseudo-hexagonal phase into a phase with square order, driven by attractive interactions between the {100} planes perpendicular to the liquid substrate, which maximize facet-to-facet overlap. The nanocrystals then attach atomically via a necking process, resulting in 2D square superlattices.


Nano Letters | 2015

Measuring Lattice Strain in Three Dimensions through Electron Microscopy

Bart Goris; Jan De Beenhouwer; Annick De Backer; Daniele Zanaga; K. Joost Batenburg; Ana Sánchez-Iglesias; Luis M. Liz-Marzán; Sandra Van Aert; Sara Bals; Jan Sijbers; Gustaaf Van Tendeloo

The three-dimensional (3D) atomic structure of nanomaterials, including strain, is crucial to understand their properties. Here, we investigate lattice strain in Au nanodecahedra using electron tomography. Although different electron tomography techniques enabled 3D characterizations of nanostructures at the atomic level, a reliable determination of lattice strain is not straightforward. We therefore propose a novel model-based approach from which atomic coordinates are measured. Our findings demonstrate the importance of investigating lattice strain in 3D.


ACS Nano | 2014

Atomic structure of quantum gold nanowires: quantification of the lattice strain.

Paromita Kundu; Stuart Turner; Sandra Van Aert; N. Ravishankar; Gustaaf Van Tendeloo

Theoretical studies exist to compute the atomic arrangement in gold nanowires and the influence on their electronic behavior with decreasing diameter. Experimental studies, e.g., by transmission electron microscopy, on chemically synthesized ultrafine wires are however lacking owing to the unavailability of suitable protocols for sample preparation and the stability of the wires under electron beam irradiation. In this work, we present an atomic scale structural investigation on quantum single crystalline gold nanowires of 2 nm diameter, chemically prepared on a carbon film grid. Using low dose aberration-corrected high resolution (S)TEM, we observe an inhomogeneous strain distribution in the crystal, largely concentrated at the twin boundaries and the surface along with the presence of facets and surface steps leading to a noncircular cross section of the wires. These structural aspects are critical inputs needed to determine their unique electronic character and their potential as a suitable catalyst material. Furthermore, electron-beam-induced structural changes at the atomic scale, having implications on their mechanical behavior and their suitability as interconnects, are discussed.

Collaboration


Dive into the Sandra Van Aert's collaboration.

Top Co-Authors

Avatar

Sara Bals

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guus Rijnders

MESA+ Institute for Nanotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge