Sandrine Bellenger
University of Burgundy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandrine Bellenger.
Diabetes | 2011
Jérôme Bellenger; Sandrine Bellenger; Amandine Bataille; Karen A. Massey; Anna Nicolaou; Mickaël Rialland; Christian Tessier; Jing X. Kang; Michel Narce
OBJECTIVE Because of confounding factors, the effects of dietary n-3 polyunsaturated fatty acids (PUFA) on type 1 diabetes remain to be clarified. We therefore evaluated whether fat-1 transgenic mice, a well-controlled experimental model endogenously synthesizing n-3 PUFA, were protected against streptozotocin (STZ)-induced diabetes. We then aimed to elucidate the in vivo response at the pancreatic level. RESEARCH DESIGN AND METHODS β-Cell destruction was produced by multiple low-doses STZ (MLD-STZ). Blood glucose level, plasma insulin level, and plasma lipid analysis were then performed. Pancreatic mRNA expression of cytokines, the monocyte chemoattractant protein, and GLUT2 were evaluated as well as pancreas nuclear factor (NF)-κB p65 and inhibitor of κB (IκB) protein expression. Insulin and cleaved caspase-3 immunostaining and lipidomic analysis were performed in the pancreas. RESULTS STZ-induced fat-1 mice did not develop hyperglycemia compared with wild-type mice, and β-cell destruction was prevented as evidenced by lack of histological pancreatic damage or reduced insulin level. The prevention of β-cell destruction was associated with no proinflammatory cytokine induction (tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase) in the pancreas, a decreased NF-κB, and increased IκB pancreatic protein expression. In the fat-1–treated mice, proinflammatory arachidonic-derived mediators as prostaglandin E2 and 12-hydroxyeicosatetraenoic acid were decreased and the anti-inflammatory lipoxin A4 was detected. Moreover, the 18-hydroxyeicosapentaenoic acid, precursor of the anti-inflammatory resolvin E1, was highly increased. CONCLUSIONS Collectively, these findings indicate that fat-1 mice were protected against MLD-STZ–induced diabetes and pointed out for the first time in vivo the beneficial effects of n-3 PUFA at the pancreatic level, on each step of the development of the pathology—inflammation, β-cell damage—through cytokine response and lipid mediator production.
PLOS ONE | 2010
Mélaine Minville-Walz; Anne-Sophie Pierre; Laurent Pichon; Sandrine Bellenger; Cécile Fèvre; Jérôme Bellenger; Christian Tessier; Michel Narce; Mickaël Rialland
Background Cancer cells present a sustained de novo fatty acid synthesis with an increase of saturated and monounsaturated fatty acid (MUFA) production. This change in fatty acid metabolism is associated with overexpression of stearoyl-CoA desaturase 1 (Scd1), which catalyses the transformation of saturated fatty acids into monounsaturated fatty acids (e.g., oleic acid). Several reports demonstrated that inhibition of Scd1 led to the blocking of proliferation and induction of apoptosis in cancer cells. Nevertheless, mechanisms of cell death activation remain to be better understood. Principal Findings In this study, we demonstrated that Scd1 extinction by siRNA triggered abolition of de novo MUFA synthesis in cancer and non-cancer cells. Scd1 inhibition-activated cell death was only observed in cancer cells with induction of caspase 3 activity and PARP-cleavage. Exogenous supplementation with oleic acid did not reverse the Scd1 ablation-mediated cell death. In addition, Scd1 depletion induced unfolded protein response (UPR) hallmarks such as Xbp1 mRNA splicing, phosphorylation of eIF2α and increase of CHOP expression. However, the chaperone GRP78 expression, another UPR hallmark, was not affected by Scd1 knockdown in these cancer cells indicating a peculiar UPR activation. Finally, we showed that CHOP induction participated to cell death activation by Scd1 extinction. Indeed, overexpression of dominant negative CHOP construct and extinction of CHOP partially restored viability in Scd1-depleted cancer cells. Conclusion These results suggest that inhibition of de novo MUFA synthesis by Scd1 extinction could be a promising anti-cancer target by inducing cell death through UPR and CHOP activation.
Biochimica et Biophysica Acta | 2013
Anne-Sophie Pierre; Mélaine Minville-Walz; Cécile Fèvre; Aziz Hichami; Joseph Gresti; Laurent Pichon; Sandrine Bellenger; Jérôme Bellenger; François Ghiringhelli; Michel Narce; Mickaël Rialland
Dietary conjugated linoleic acids (CLA) are fatty acid isomers with anticancer activities produced naturally in ruminants or from vegetable oil processing. The anticancer effects of CLA differ upon the cancer origin and the CLA isomers. In this study, we carried out to precise the effects of CLA isomers, c9,t11 and t10,c12 CLA, on mechanisms of cell death induction in colon cancer cells. We first showed that only t10,c12 CLA treatment (25 and 50μM) for 72h triggered apoptosis in colon cancer cells without affecting viability of normal-derived colon epithelial cells. Exposure of colon cancer cells to t10,c12 CLA activated ER stress characterized by induction of eIF2α phoshorylation, splicing of Xbp1 mRNA and CHOP expression. Furthermore, we evidenced that inhibition of CHOP expression and JNK signaling decreased t10,c12 CLA-mediated cancer cell death. Finally, we showed that CHOP induction by t10,c12 CLA was dependent on ROS production and that the anti-oxidant N-acetyl-cysteine reduced CHOP induction-dependent cell death. These results highlight that t10,c12 CLA exerts its cytotoxic effect through ROS generation and a subsequent ER stress-dependent apoptosis in colon cancer cells.
Journal of Lipid Research | 2013
Zuquan Zou; Sandrine Bellenger; Karen A. Massey; Anna Nicolaou; Audrey Geissler; Célia Bidu; Bernard Bonnotte; Anne Sophie Pierre; Mélaine Minville-Walz; Michaël Rialland; John M. Seubert; Jing X. Kang; Laurent Lagrost; Michel Narce; Jérôme Bellenger
Overexpression of the tyrosine kinase receptor, ErbB2/HER2/Neu, occurs in 25–30% of invasive breast cancer (BC) with poor patient prognosis. Due to confounding factors, inconsistencies still remain regarding the protective effects of n-3 polyunsaturated fatty acids (PUFAs) on BC. We therefore evaluated whether fat-1 transgenic mice, endogenously synthesizing n-3 PUFAs from n-6 PUFAs, were protected against BC development, and we then aimed to study in vivo a mechanism potentially involved in such protection. E0771 BC cells were implanted into fat-1 and wild-type (WT) mice. After tumorigenesis examination, we analyzed the expression of proteins involved in the HER2 signaling pathway and lipidomic analyses were performed in tumor tissues and plasma. Our results showed that tumors totally disappeared by day 15 in fat-1 mice but continued to grow in WT mice. This prevention can be related in part to significant repression of the HER2/β-catenin signaling pathway and formation of significant levels of n-3 PUFA-derived bioactive mediators (particularly 15-hydroxyeicosapentaenoic acid, 17-hydroxydocosahexaenoic acid, and prostaglandin E3) in the tumors of fat-1 mice compared with WT mice. All together these data demonstrate an anti-BC effect of n-3 PUFAs through, at least in part, HER2 signaling pathway downregulation, and highlight the importance of gene-diet interactions in BC.
Biochimie | 2009
Jérémy Skrzypski; Sandrine Bellenger; Jérôme Bellenger; Andrew J. Sinclair; Jean-Pierre Poisson; Christian Tessier; Mickaël Rialland; Michel Narce
Dietary polyunsaturated fatty acids (PUFA) play a key role in regulating delta-6 desaturase (D6D), the key enzyme for long-chain PUFA biosynthesis. Nevertheless, the extent of their effects on this enzyme remains controversial and difficult to assess. It has been generally admitted that C18 unsaturated fatty acids (UFAs) regulate negatively delta-6 desaturase (D6D). This inhibition has been evidenced in regard to a high glucose/fat free (HG/FF) diet used in reference. However, several nutritional investigations did not evidence any inhibition of desaturases when feeding fatty acids. Because the choice of the basal diet appeared to be of primary importance in such experiments, our goal was to reconsider the specific role of dietary UFAs on D6D regulation, depending on nutritional conditions. For that, sixteen adult Wistar rats were fed purified linoleic acid, alpha-linolenic acid or oleic acid, included in one of two diets at 4% by weight: an HG/FF or a high starch base (HS) where the pure UFAs replaced a mixed vegetable oil. Our results showed first that D6D specific activity was significantly greater when measured in presence of an HG/FF than with an HS/4% vegetable oil diet. Secondly, we found that linoleic and alpha-linolenic acids added to HG/FF reduced the specific activity of D6D. In contrast, when pure UFAs were added to an HS base, D6D specific activities remained unchanged or increased. Concordant results were obtained on D6D mRNA expression. Altogether, this study evidenced the importance of the nutritional status in D6D regulation by C18 UFAs: when used as control, HG/FF diet stimulates D6D compared with a standard control diet containing starch and 4% fats, leading to an overestimation of the D6D regulation by UFAs. Then, UFAs should be considered as repressors for unsaturated fatty acid biosynthesis only in very specific nutritional conditions.
Biochimica et Biophysica Acta | 2011
Cécile Fèvre; Sandrine Bellenger; Anne-Sophie Pierre; Mélaine Minville; Jérôme Bellenger; Joseph Gresti; Mickaël Rialland; Michel Narce; Christian Tessier
Metabolic syndrome characterized by insulin resistance and obesity is accompanied by severe lipid metabolism perturbations and chronic low-grade inflammation. However, many unresolved questions remained regarding the regulation that underlie dyslipidemia, particularly the regulation of the metabolic cascade (synthesis and release) leading to eicosanoid precursors release. This study was undertaken to investigate the regulation of desaturases/elongases and phospholipases A(2) during the establishment of metabolic syndrome. Our results showed that delta-6 desaturase as well as elongase-6 expressions were upregulated in 3-month-old Zucker fatty rats as compared to lean littermates, independently of SREBP-1c activation. We also demonstrated for the first time an increase of liver group VII phospholipase A(2) gene expression in the obese animals together with a strong specific inhibition of type IVA and VIA phospholipases A(2). These results suggest that the regulation of unsaturated fatty acids biosynthesis and signalling cascade could contribute to the development of liver lipid dysregulation related to metabolic syndrome and may be considered as new potential targets in such pathological conditions.
Current Drug Metabolism | 2012
Michel Narce; Jérôme Bellenger; Mickaël Rialland; Sandrine Bellenger
Stearoyl-CoA desaturase 1 (SCD-1) is a delta-9 fatty acid desaturase that catalyzes the synthesis of monounsaturated fatty acids. Indeed, SCD-1 is the critical control point regulating hepatic lipogenesis and lipid oxidation. Due to its central role in lipid metabolism in the liver, recent studies have focused on the involvement of SCD-1 in the development of fatty liver during obesity, diabetes mellitus, hypertension, excessive alcohol consumption, and in subjects with high triglyceride blood concentrations. The accumulation of fat in liver cells can be a sign that harmful conditions are developing, possibly associated with or leading to inflammation of the liver. This review evaluates the recent advances in our understanding of the regulation of SCD-1 expression and its role in the development of nonalcoholic and alcoholic hepatosteatosis. Animal models presenting a liver-specific loss or inhibition of SCD-1, as well as dietary interventions, have highlighted the important role of the enzyme in the accumulation of fat (fatty infiltration) in hepatocytes during both alcoholic and nonalcoholic liver diseases. The data summarized in this article support the notion that SCD-1 plays a direct role in the development of fatty liver diseases, and is not simply a marker of an unfavorable diet or hepatic disorder. Accordingly, SCD-1 represents a promising therapeutic target for the treatment of hepatic steatosis.
Biochimie | 2014
Zuquan Zou; Célia Bidu; Sandrine Bellenger; Michel Narce; Jérôme Bellenger
Overexpression of the tyrosine kinase receptor ErbB2/HER2/Neu, occurs in 25%-30% of invasive breast cancer (BC) with poor patient prognosis. Even if numerous studies have shown prevention of breast cancer by n-3 fatty acid intake, the experimental conditions under which n-3 fatty acids exert their protective effect have been variable from study to study, preventing unifying conclusions. Due to confounding factors, inconsistencies still remain regarding protective effects of n-3 polyunsaturated fatty acids (PUFA) on BC. When animals are fed with dietary supplementation in n-3 fatty acids (the traditional approach to modify tissue content and decrease the n-6/n-3 ratio) complex dietary interactions can occur among dietary lipids (antioxidants, vitamins…) that can modulate the activity of n-3 fatty acids. So, what are the specific roles of these n-3 PUFA in reducing breast cancer risk and particularly preventing HER2-positive breast cancer? In this review, we discuss crucial points that may account for discrepancies of results and provide a highly effective genetic approach that can eliminate confounding factors of diet for evaluating the molecular mechanisms of n-3 PUFA in HER2 signaling pathway regulation. The fat-1 transgenic mouse model is capable of converting n-6 to n-3 fatty acids leading to an increase in n-3 fatty acid content with a balanced n-6/n-3 fatty acid ratio in all tissues. The fat-1 mouse model allows well-controlled studies in HER2-positive breast cancer prevention to be performed, without the conflict of potential confounding factors of diet.
Environmental Science and Pollution Research | 2018
Isma Merad; Sandrine Bellenger; Aziz Hichami; Naim Akhtar Khan; Noureddine Soltani
Donax trunculus is the most consumed bivalve by the local population of the Northeast Algeria for its nutritional value. Therefore, the aim of the current study was to determine the effects of cadmium (Cd), a known toxic metal, on the alterations in main essential omega-3 fatty acids, i.e., eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3), in male and female gonads of D. trunculus during the reproduction period at spring (before spawning). Additionally, this work seeks to describe the relation between EPA and DHA with non-methylene-interrupted dienoic (NMID) fatty acids, and explores their possible contribution of to protect against Cd stress. The samples were collected at El Battah, a relatively clean sea shore, and reared in the laboratory. Physico-chemical parameters such as temperature, pH, salinity, and dissolved oxygen were measured. Cd was added to the rearing water at two sublethal concentrations (LC10 and LC25-96h, as determined previously). A two-way ANOVA analysis indicated significant effects of concentrations and genders for both fatty acids. Our results showed a significant reduction in EPA and DHA concentrations in the both genders, with a strong effect in females. There was also a negative correlation between NMID fatty acids and the two essential omega-3 fatty acids for each gender.
Analytica Chimica Acta | 2006
J.-F. Merlin; Joseph Gresti; Sandrine Bellenger; Michel Narce