Sandrine Roch-Lefèvre
Institut de radioprotection et de sûreté nucléaire
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandrine Roch-Lefèvre.
Radiation Research | 2010
Sandrine Roch-Lefèvre; Tania Mandina; Pascale Voisin; Gruel Gaëtan; Jorge Ernesto Gonzàlez Mesa; Marco Valente; Pierre Bonnesoeur; Omar García; Philippe Voisin; Laurence Roy
Abstract Recent studies have suggested that visualization of γ-H2AX nuclear foci can be used to estimate exposure to very low doses of ionizing radiation. Although this approach is widely used for various purposes, its suitability for individual human biodosimetry has not yet been assessed. We therefore conducted such an assessment with the help of available software for observing and automatically scoring γ-H2AX foci. The presence of γ-H2AX foci was evaluated in human peripheral blood lymphocytes exposed ex vivo to γ rays in a dose range of 0.02 to 2 Gy. We analyzed the response of γ-H2AX to ionizing radiation in relation to dose, time after exposure, and individual variability. We constructed dose–effect calibration curves at 0.5, 8 and 16 h after exposure and evaluated the threshold of detection of the technique. The results show the promise of automatic γ-H2AX scoring for a reliable assessment of radiation doses in a dose range of 0.6 Gy to 2 Gy up to 16 h after exposure. This γ-H2AX-based assay may be useful for biodosimetry, especially for triage to distinguish promptly among individuals the ones who have received negligible doses from those with significantly exposures who are in need of immediate medical attention. However, additional in vivo experiments are needed for validation.
Radiation Research | 2009
Aurélie Vaurijoux; Gaëtan Gruel; Frédéric Pouzoulet; Eric Gregoire; Cécile Martin; Sandrine Roch-Lefèvre; Pascale Voisin; Philippe Voisin; Laurence Roy
Abstract Vaurijoux, A., Gruel, G., Pouzoulet, F., Grégoire, E., Martin, C., Roch-Lefèvre, S., Voisin, P., Voisin, P. and Roy, L. Strategy for Population Triage Based on Dicentric Analysis. Radiat. Res. 171, 541–548 (2009). After large-scale accidental overexposure to ionizing radiation, a rapid triage of the exposed population can be performed by scoring dicentrics and ring chromosomes among 50 metaphases. This is rapid but is not accurate because the sensitivity is around 0.5 Gy. After the triage step, dose can be estimated by scoring 500 metaphases. This is lengthy but very accurate because the sensitivity is between 0.1 and 0.2 Gy. To improve the methodology, we propose the use of software for automatic dicentric scoring that was tested on victims of an accident in Dakar. Manual scoring of 50 metaphases was carried out, then manual scoring of 500 metaphases, and automatic scoring. Comparison between the dose classifications obtained with manual scoring on 50 metaphases and 500 metaphases showed 50% misclassification with the manual scoring on 50 metaphases. Comparison between the dose classifications obtained with the automatic scoring and manual scoring on 500 metaphases showed only 4.35% misclassification with the automatic scoring. The automatic scoring method is more accurate than the manual scoring on 50 metaphases and can therefore be used for triage, and in place of the manual scoring on 500 metaphases method for individual dose estimation, because it is as accurate and much faster.
Radiation Protection Dosimetry | 2015
Ulrike Kulka; L. Ainsbury; Michael J. Atkinson; Stephen Barnard; R. W. Smith; Joan Francesc Barquinero; Leonardo Barrios; C. Bassinet; Christina Beinke; Alexandra Cucu; F. Darroudi; P. Fattibene; E. Bortolin; S. Della Monaca; Octávia Monteiro Gil; Eric Gregoire; Valeria Hadjidekova; Siamak Haghdoost; Vasiliki I. Hatzi; W. Hempel; R. Herranz; Alicja Jaworska; Carita Lindholm; Katalin Lumniczky; R. Mkacher; S. Mörtl; Alegría Montoro; Jayne Moquet; Mercedes Moreno; Mihaela Noditi
Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed.
Radiation Research | 2008
Gaëtan Gruel; Pascale Voisin; Aurélie Vaurijoux; Sandrine Roch-Lefèvre; Eric Gregoire; Peggy Maltère; Cyrille Petat; Xavier Gidrol; Philippe Voisin; Laurence Roy
Abstract Gruel, G., Voisin, P., Vaurijoux, A., Roch-Lefèvre, S., Gré goire, E., Maltère, P., Petat, C., Gidrol, X., Voisin, P. and Roy, L. Broad Modulation of Gene Expression in CD4+ Lymphocyte Subpopulations in Response to Low Doses of Ionizing Radiation. Radiat. Res. 170, 335–344 (2008). To compare the responses of the different lymphocyte subtypes after an exposure of whole blood to low doses of ionizing radiation, we examined variations in gene expression in different lymphocyte subpopulations using microarray technology. Blood samples from five healthy donors were independently exposed to 0 (sham irradiation), 0.05 and 0.5 Gy of ionizing radiation. Three and 24 h after exposure, CD56+, CD4+ and CD8+ cells were negatively isolated. RNA from each set of experimental conditions was competitively hybridized on 25k oligonucleotide microarrays. Modifications of gene expression were measured after both intervals and in all cell types. Twenty-four hours after exposure to 0.5 Gy, we observed an induction of the expression of BAX, PCNA, GADD45, DDB2 and CDKN1A. However, the numbers of modulated genes greatly differed between cell types. In particular, 3 h after exposure to doses as low as 0.05 Gy, the number of down-modulated genes was 10 times greater for CD4+ cells than for all other cell types. Moreover, most of these repressed genes were taking part in the cell processes of protein biosynthesis and oxidative phosphorylation. The results suggest that several biological pathways in CD4+ cells could be sensitive to low doses of radiation. Therefore, specifically studying CD4+ cells could help to understand the mechanisms involved in low-dose response and allow their detection.
International Journal of Radiation Biology | 2014
Elizabeth A. Ainsbury; Jenna Al-hafidh; Ainars Bajinskis; Stephen Barnard; Joan Francesc Barquinero; Christina Beinke; Virginie de Gelder; Eric Gregoire; Alicja Jaworska; Carita Lindholm; David G. Lloyd; Jayne Moquet; Reetta Nylund; Ursula Oestreicher; Sandrine Roch-Lefèvre; Kai Rothkamm; Horst Romm; Harry Scherthan; Sylwester Sommer; Hubert Thierens; Charlot Vandevoorde; Anne Vral; Andrzej Wojcik
Abstract Purpose: The European Unions Seventh Framework Programme-funded project ‘Multi-disciplinary biodosimetric tools to manage high scale radiological casualties’ (MULTIBIODOSE) has developed a multiparametric approach to radiation biodosimetry, with a particular emphasis on triage of large numbers of potentially exposed individuals following accidental exposures. In November 2012, an emergency exercise took place which tested the capabilities of the MULTIBIODOSE project partners. The exercise described here had a dual purpose: Intercomparison of (i) three biodosimetric assays, and (ii) the capabilities of the seven laboratories, with regards to provision of triage status for suspected radiation exposed individuals. Materials and methods: Three biological dosimetry tools – the dicentric, micronucleus and gamma-H2AX (the phosphorylated form of member X of histone H2A, in response to DNA double-strand breaks) foci assays – were tested, in addition to provision of the triage status results (low exposure: < 1 Gy; medium exposure: 1–2 Gy; high exposure: > 2 Gy) by the MULTIBIODOSE software. The exercise was run in two modes: An initial triage categorisation of samples (based on the first dose estimates for each assay received from each laboratory) followed by collation of the full set of estimated doses (all the results from all modes of each assay carried out by the participating laboratories) calculated using as many modes of operation as possible of the different assays developed during the project. Simulated acute whole body and partial body exposures were included. Results: The results of the initial triage categorisation and the full comparison of assays and methods within and between laboratories are presented here. Conclusions: The data demonstrate that the MULTIBIODOSE approach of applying multiparametric tools to radiation emergencies is valid and effective.
Radiation Research | 2012
Aurélie Vaurijoux; Eric Gregoire; Sandrine Roch-Lefèvre; Pascale Voisin; Cécile Martin; Philippe Voisin; Laurence Roy; Gaëtan Gruel
In accidental exposure to ionizing radiation, it is essential to estimate the dose received by the victims. Currently dicentric scoring is the best biological indicator of exposure. The standard biological dosimetry procedure (500 metaphases scored manually) is suitable for a few dose estimations, but the time needed for analysis can be problematic in the case of a large-scale accident. Recently, a new methodology using automatic detection of dicentrics has greatly decreased the time needed for dose estimation and preserves the accuracy of the estimation. However, the capability to detect nonhomogeneous partial-body exposures is an important advantage of dicentric scoring-based biodosimetry, and this remains to be tested with automatic scoring. Thus we analyzed the results obtained with in vitro blood dilutions and in real cases of accidental exposure (partial- or whole-body exposure) using manual scoring and automatic detection of dicentrics. We confirmed that automatic detection allows threefold quicker dicentric scoring than the manual procedure with similar dose estimations and uncertainty intervals. The results concerning partial-body exposures were particularly promising, and homogeneously exposed samples were correctly distinguished from heterogeneously exposed samples containing 5% to 75% of blood irradiated with 2 Gy. In addition, the results obtained for real accident cases were similar whatever the methodology used. This study demonstrates that automatic detection of dicentrics is a credible alternative for recent and acute cases of whole- and partial-body accidental exposures to ionizing radiation.
International Journal of Radiation Biology | 2010
Jorge Ernesto González; Sandrine Roch-Lefèvre; Tania Mandina; Omar García; Laurence Roy
Purpose: To test the γ-H2AX (Histone 2AX phosphorylation of serine 139) foci assay for the detection of ionising radiation-induced DNA damage in buccal exfoliated cells. Materials and methods: Buccal mucosa cells from five individuals (three females, two males, aged 26–47 years) were exposed to 0, 0.5, 1, 2 and 4 Gy of gamma-rays. DNA damage and DNA damage removal were measured using the γ-H2AX foci assay. Lymphocytes from one donor and the nuclear antigen H2B were used as a positive control to test the staining protocol. Results: In the absence of radiation exposure, no significant differences for both H2B and γ-H2AX signals were detected when comparing buccal cells and lymphocytes. The γ-H2AX foci rate per cell in non-irradiated buccal cells was 0.08 ± 0.02. The number of γ-H2AX foci increased linearly with ionising radiation dose in the interval from 0–4 Gy, and reached a foci rate per cell of 0.82 ± 0.22 at 4 Gy. Incubation experiments after in vitro gamma irradiation revealed that the number of γ-H2AX foci did not show a significant decrease 5 h post exposure under the experimental conditions used. Conclusion: Data suggest that it is possible to apply the γ-H2AX foci assay for the detection of ionising radiation-induced DNA damage in buccal exfoliated cells. The low removal of ionising radiation induced γ-H2AX foci in buccal cells is a potential advantage for a biological dosimetry application.
Radiation Research | 2013
Gaëtan Gruel; Eric Gregoire; Sarah Lecas; Cécile Martin; Sandrine Roch-Lefèvre; Aurélie Vaurijoux; Pascale Voisin; Philippe Voisin; Joan Francesc Barquinero
Dicentric chromosome analysis remains the most widely used method in biodosimetry. It has a lower detection limit of about 0.1 Gy, and allows one to distinguish between whole- and partial-body exposures. A drawback of the dicentric analysis is that it is a time consuming method and maybe difficult to implement in a mass casualty event. To try to increase the analysis capacity, automatic dicentric scoring (ADS) using image analysis software is being incorporated in several laboratories. Here we present the results obtained in an emergency exercise simulating 50 victims. The ability to distinguish different radiations scenarios is evaluated. To simulate whole-body exposures peripheral blood samples were irradiated at doses between 0–4.7 Gy, and to simulate partial-body exposures irradiated and nonirradiated blood were mixed in different proportions. With the data obtained from the first slide analyzed (with about 300–400 cells), 32 of 34 simulated whole-body exposures were correctly classified according to radiation exposure levels. For simulated partial-body irradiations, it was possible to detect them as partial exposures at the end of the first slide analyzed but only at the highest doses. In all cases the classification was updated every time the analysis of one additional slide was finished. The comparison between our present results and those reported in the literature for manual scoring shows that for triage purposes the ADS based on 300–400 cells is similar in efficiency to classifying the cases based on manual scoring of 50 cells. However, if one accounts for the associated uncertainties and the time needed for ADS, we suggest that ADS triage scoring should be based on about 1,000 cells. For final dose estimations the number of cells to score will depend on the initial estimated dose, and on the information contributed from physical dose-reconstruction or clinical symptoms. At doses higher than 1 Gy, we propose analysis of 1,500 and for lower doses or suspected partial-body exposures, the number of cells to score should be 3,000.
Radiation Protection Dosimetry | 2013
Eric Gregoire; Valeria Hadjidekova; Rositsa Hristova; Gaëtan Gruel; Sandrine Roch-Lefèvre; P. Voisin; Albena Staynova; S. Deleva; Elizabeth A. Ainsbury; David C. Lloyd; Joan Francesc Barquinero
In 2011, a serious radiation accident occurred in Stamboliyski, Bulgaria, in an industrial sterilisation facility using very-high-activity (60)Co sources. For the five persons accidentally exposed, biological dosimetry based on dicentric analysis was performed in Sofia and in Paris, where the patients were transferred for treatment. Before completing the chromosomal dose assessment, and for the most exposed person, a preliminary cytogenetic evaluation based on electronically transmitted metaphase images was made. The averaged acute whole-body dose estimates for the five patients ranged from 5.2 to 1.2 Gy, and good agreement was obtained between the two laboratories. The patients were also assessed by their prodromal responses and depressed blood cell counts over the first week. The cytogenetic dose estimates were in good accord with those derived from the blood counts, and both techniques indicated that, for the two most seriously exposed persons both techniques indicated that the initial prodromal reactions had suggested somewhat less severe exposure.
Radiation Protection Dosimetry | 2012
Laurence Roy; Eric Gregoire; Gaëtan Gruel; Sandrine Roch-Lefèvre; Pa. Voisin; A. Busset; C. Martin; Ph. Voisin
Fundamentals of biological dosimetry are described in the International Atomic Energy Agency manual, but all over the world each laboratory is using its own protocol. To test the influence of protocol variations, some blood samples were exposed to 0.5 Gy of gamma radiation and mitotic index and dicentric rates were measured under different experimental conditions. The effect of seven parameters [bromodeoxyuridin (BrdU), phytohaemagglutinin and colcemid concentrations, blood and medium volumes, culture duration and incubation temperature] was tested using a Placket and Burman experimental design. The analysis reveals that the mitotic index was influenced by the concentration of BrdU, medium and blood volumes, the culture duration and the temperature. However, none of the factors has a significant impact on the yield of dicentrics. The dicentric assay is robust against reagent variations within the range tested. These results could be used by relevant laboratories as elements of their procedures robustness in any event requiring such demonstration.