Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandy Giuliano is active.

Publication


Featured researches published by Sandy Giuliano.


Cancer Research | 2010

Targeting Cancer Cell Metabolism: The Combination of Metformin and 2-Deoxyglucose Induces p53-Dependent Apoptosis in Prostate Cancer Cells

Issam Ben Sahra; Kathiane Laurent; Sandy Giuliano; Frédéric Larbret; Gilles Ponzio; Pierre Gounon; Yannick Le Marchand-Brustel; Sophie Giorgetti-Peraldi; Mireille Cormont; Corine Bertolotto; Marcel Deckert; Patrick Auberger; Jean François Tanti; Frédéric Bost

Targeting cancer cell metabolism is a new promising strategy to fight cancer. Metformin, a widely used antidiabetic agent, exerts antitumoral and antiproliferative action. In this study, the addition of metformin to 2-deoxyglucose (2DG) inhibited mitochondrial respiration and glycolysis in prostate cancer cells leading to a severe depletion in ATP. The combination of the two drugs was much more harmful for cancer cells than the treatment with metformin or 2DG alone, leading to 96% inhibition of cell viability in LNCaP prostate cancer cells. In contrast, a moderate effect on cell viability was observed in normal prostate epithelial cells. At the cellular level, the combination of metformin and 2DG induced p53-dependent apoptosis via the energy sensor pathway AMP kinase, and the reexpression of a functional p53 in p53-deficient prostate cancer cells restored caspase-3 activity. In addition to apoptosis, the combination of metformin and 2DG arrested prostate cancer cells in G(2)-M. This G(2)-M arrest was independent of p53 and correlated with a stronger decrease in cell viability than obtained with either drug. Finally, metformin inhibited 2DG-induced autophagy, decreased beclin 1 expression, and triggered a switch from a survival process to cell death. Our study reinforces the growing interest of metabolic perturbators in cancer therapy and highlights the potential use of the combination of metformin and 2DG as an anticancerous treatment.


Nature | 2011

A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma

Corine Bertolotto; Fabienne Lesueur; Sandy Giuliano; Thomas Strub; Mahaut de Lichy; Karine Bille; Philippe Dessen; Benoit d'Hayer; Hamida Mohamdi; Audrey Remenieras; Eve Maubec; Arnaud de la Fouchardière; Vincent Molinié; Pierre Vabres; Stéphane Dalle; Nicolas Poulalhon; Tanguy Martin-Denavit; Luc Thomas; Pascale Andry-Benzaquen; Nicolas Dupin; F. Boitier; Annick Rossi; Jean Luc Perrot; B. Labeille; Caroline Robert; Bernard Escudier; Olivier Caron; Laurence Brugières; Simon Saule; Betty Gardie

So far, no common environmental and/or phenotypic factor has been associated with melanoma and renal cell carcinoma (RCC). The known risk factors for melanoma include sun exposure, pigmentation and nevus phenotypes; risk factors associated with RCC include smoking, obesity and hypertension. A recent study of coexisting melanoma and RCC in the same patients supports a genetic predisposition underlying the association between these two cancers. The microphthalmia-associated transcription factor (MITF) has been proposed to act as a melanoma oncogene; it also stimulates the transcription of hypoxia inducible factor (HIF1A), the pathway of which is targeted by kidney cancer susceptibility genes. We therefore proposed that MITF might have a role in conferring a genetic predisposition to co-occurring melanoma and RCC. Here we identify a germline missense substitution in MITF (Mi-E318K) that occurred at a significantly higher frequency in genetically enriched patients affected with melanoma, RCC or both cancers, when compared with controls. Overall, Mi-E318K carriers had a higher than fivefold increased risk of developing melanoma, RCC or both cancers. Codon 318 is located in a small-ubiquitin-like modifier (SUMO) consensus site (ΨKXE) and Mi-E318K severely impaired SUMOylation of MITF. Mi-E318K enhanced MITF protein binding to the HIF1A promoter and increased its transcriptional activity compared to wild-type MITF. Further, we observed a global increase in Mi-E318K-occupied loci. In an RCC cell line, gene expression profiling identified a Mi-E318K signature related to cell growth, proliferation and inflammation. Lastly, the mutant protein enhanced melanocytic and renal cell clonogenicity, migration and invasion, consistent with a gain-of-function role in tumorigenesis. Our data provide insights into the link between SUMOylation, transcription and cancer.


Genes & Development | 2011

Senescent cells develop a PARP-1 and nuclear factor-κB-associated secretome (PNAS)

Mickaël Ohanna; Sandy Giuliano; Caroline Bonet; Véronique Imbert; Véronique Hofman; Joséphine Zangari; Karine Bille; Caroline Robert; Brigitte Bressac-de Paillerets; Paul Hofman; Stéphane Rocchi; Jean-Francxois Peyron; Jean-Philippe Lacour; Robert Ballotti; Corine Bertolotto

Melanoma cells can enter the process of senescence, but whether they express a secretory phenotype, as reported for other cells, is undetermined. This is of paramount importance, because this secretome can alter the tumor microenvironment and the response to chemotherapeutic drugs. More generally, the molecular events involved in formation of the senescent-associated secretome have yet to be determined. We reveal here that melanoma cells experiencing senescence in response to diverse stimuli, including anti-melanoma drugs, produce an inflammatory secretory profile, where the chemokine ligand-2 (CCL2) acts as a critical effector. Thus, we reveal how senescence induction might be involved in therapeutic failure in melanoma. We further provide a molecular relationship between senescence induction and secretome formation by revealing that the poly(ADP-ribose) polymerase-1 (PARP-1)/nuclear factor-κB (NF-κB) signaling cascade, activated during senescence, drives the formation of a secretome endowed with protumoral and prometastatic properties. Our findings also point to the existence of the PARP-1 and NF-κB-associated secretome, termed the PNAS, in nonmelanoma cells. Most importantly, inhibition of PARP-1 or NF-κB prevents the proinvasive properties of the secretome. Collectively, identification of the PARP-1/NF-κB axis in secretome formation opens new avenues for therapeutic intervention against cancers.


Cancer Research | 2010

Microphthalmia-Associated Transcription Factor Controls the DNA Damage Response and a Lineage-Specific Senescence Program in Melanomas

Sandy Giuliano; Yann Cheli; Mickaël Ohanna; Caroline Bonet; Laurent Beuret; Karine Bille; Agnès Loubat; Véronique Hofman; Paul Hofman; Gilles Ponzio; Philippe Bahadoran; Robert Ballotti; Corine Bertolotto

Apoptosis and senescence are cellular failsafe programs that counteract excessive mitogenic signaling observed in cancer cells. Melanoma is known for its notorious resistance to apoptotic processes; therefore, senescence, which remains poorly understood in melanomas, can be viewed as a therapeutic alternative. Microphthalmia-associated transcription factor (MITF), in which its M transcript is specifically expressed in melanocyte cells, plays a critical role in melanoma proliferation, and its specific inhibition is associated with G(0)-G(1) growth arrest. Interestingly, decreased MITF expression has been described in senescent melanocytes, and we have observed an inhibition of MITF expression in melanoma cells exposed to chemotherapeutic drugs that induce their senescence. All these observations thereby question the role of MITF in controlling senescence in melanoma cells. Here, we report that long-term depletion of MITF in melanoma cells triggers a senescence program characterized by typical morphologic and biochemical changes associated with a sustained growth arrest. Further, we show that MITF-silenced cells engage a DNA damage response (DDR) signaling pathway, leading to p53 upregulation, which is critically required for senescence entry. This study uncovers the existence of a lineage-restricted DDR/p53 signaling pathway that is inhibited by MITF to prevent senescence and favor melanoma cell proliferation.


Biochimie | 2013

Mechanisms of resistance to anti-angiogenesis therapies.

Sandy Giuliano; Gilles Pagès

Angiogenesis, the formation of new blood vessels from preexisting ones, provides oxygen and nutrients to actively proliferating tumor cells. Hence, it represents a critical aspect of tumor progression and metastasis. Because inhibition of angiogenesis represents a major approach to cancer treatment, the development of inhibitors of angiogenesis is a major challenge. The first FDA approved anti-angiogenic drug bevacizumab, a humanized monoclonal antibody directed against the Vascular Endothelial Growth Factor (VEGF), has been approved for the treatment of metastatic colorectal, lung, breast, and kidney cancers. The encouraging results have lead to the development, in the past few years, of other agents targeting angiogenic pathways as potent anti-cancer drugs and a number of them have been approved for metastatic breast, lung, kidney, and central nervous system cancers. Despite a statistically significant increase in progression free survival, which has accelerated FDA approval, no major benefit to overall survival was described and patients inevitably relapsed due to acquired resistance. However, while progression free survival was increased by only a few months for the majority of the patients, some clearly benefited from the treatment with a real increase in life span. The objective of this review is to present an overview of the different treatments targeting angiogenesis, their efficacy and the mechanisms of resistance that have been identified in different cancer types. It is essential to understand how resistance (primary or acquired over time) develops and how it may be overcome.


Cancer Research | 2013

Autophagy Plays a Critical Role in the Degradation of Active RHOA, the Control of Cell Cytokinesis, and Genomic Stability

Amine Belaid; Michael Cerezo; Abderrahman Chargui; Elisabeth Corcelle-Termeau; Florence Pedeutour; Sandy Giuliano; Marius Ilie; Isabelle Rubera; Michel Tauc; Sophie Barale; Corinne Bertolotto; Patrick Brest; Valérie Vouret-Craviari; Daniel J. Klionsky; Georges F. Carle; Paul Hofman; Baharia Mograbi

Degradation of signaling proteins is one of the most powerful tumor-suppressive mechanisms by which a cell can control its own growth. Here, we identify RHOA as the molecular target by which autophagy maintains genomic stability. Specifically, inhibition of autophagosome degradation by the loss of the v-ATPase a3 (TCIRG1) subunit is sufficient to induce aneuploidy. Underlying this phenotype, active RHOA is sequestered via p62 (SQSTM1) within autolysosomes and fails to localize to the plasma membrane or to the spindle midbody. Conversely, inhibition of autophagosome formation by ATG5 shRNA dramatically increases localization of active RHOA at the midbody, followed by diffusion to the flanking zones. As a result, all of the approaches we examined that compromise autophagy (irrespective of the defect: autophagosome formation, sequestration, or degradation) drive cytokinesis failure, multinucleation, and aneuploidy, processes that directly have an impact upon cancer progression. Consistently, we report a positive correlation between autophagy defects and the higher expression of RHOA in human lung carcinoma. We therefore propose that autophagy may act, in part, as a safeguard mechanism that degrades and thereby maintains the appropriate level of active RHOA at the midbody for faithful completion of cytokinesis and genome inheritance.


Journal of Biological Chemistry | 2012

Aurora B Is Regulated by the Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase (MAPK/ERK) Signaling Pathway and Is a Valuable Potential Target in Melanoma Cells

Caroline Bonet; Sandy Giuliano; Mickaël Ohanna; Karine Bille; Maryline Allegra; Jean-Philippe Lacour; Philippe Bahadoran; Stéphane Rocchi; Robert Ballotti; Corine Bertolotto

Background: BRAFV600E melanoma cells develop resistance to vemurafenib. The BRAF/ERK axis controls melanoma cell proliferation. Aurora B is a key actor of mitosis. Results: The BRAF/ERK axis regulates Aurora B. Vemurafenib-resistant melanoma cells are sensitive to Aurora B inhibition. Conclusion: Aurora B is a valuable target in melanoma cells. Significance: Our findings provide insights into Aurora B regulation and on new druggable targets to overcome vemurafenib resistance. Metastatic melanoma is a deadly skin cancer and is resistant to almost all existing treatment. Vemurafenib, which targets the BRAFV600E mutation, is one of the drugs that improves patient outcome, but the patients next develop secondary resistance and a return to cancer. Thus, new therapeutic strategies are needed to treat melanomas and to increase the duration of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor response. The ERK pathway controls cell proliferation, and Aurora B plays a pivotal role in cell division. Here, we confirm that Aurora B is highly expressed in metastatic melanoma cells and that Aurora B inhibition triggers both senescence-like phenotypes and cell death in melanoma cells. Furthermore, we show that the BRAF/ERK axis controls Aurora B expression at the transcriptional level, likely through the transcription factor FOXM1. Our results provide insight into the mechanism of Aurora B regulation and the first molecular basis of Aurora B regulation in melanoma cells. The inhibition of Aurora B expression that we observed in vemurafenib-sensitive melanoma cells was rescued in cells resistant to this drug. Consistently, these latter cells remain sensitive to the effect of the Aurora B inhibitor. Noteworthy, wild-type BRAF melanoma cells are also sensitive to Aurora B inhibition. Collectively, our findings, showing that Aurora B is a potential target in melanoma cells, particularly in those vemurafenib-resistant, may open new avenues to improve the treatment of metastatic melanoma.


Cancer Research | 2014

The CXCL7/CXCR1/2 Axis Is a Key Driver in the Growth of Clear Cell Renal Cell Carcinoma

Renaud Grépin; Mélanie Guyot; Sandy Giuliano; Marina Boncompagni; Damien Ambrosetti; Emmanuel Chamorey; Jean-Yves Scoazec; Sylvie Négrier; Hélène Simonnet; Gilles Pagès

Mutations in the von Hippel-Lindau gene upregulate expression of the central angiogenic factor VEGF, which drives abnormal angiogenesis in clear cell renal cell carcinomas (ccRCC). However, the overexpression of VEGF in these tumors was not found to correlate with overall survival. Here, we show that the proangiogenic, proinflammatory cytokine CXCL7 is an independent prognostic factor for overall survival in this setting. CXCL7 antibodies strongly reduced the growth of ccRCC tumors in nude mice. Conversely, conditional overexpression of CXCL7 accelerated ccRCC development. CXCL7 promoted cell proliferation in vivo and in vitro, in which expression of CXCL7 was induced by the central proinflammatory cytokine interleukin (IL)-1β. ccRCC cells normally secrete low amounts of CXCL7; it was more highly expressed in tumors due to high levels of IL-1β there. We found that a pharmacological inhibitor of the CXCL7 receptors CXCR1 and CXCR2 (SB225002) was sufficient to inhibit endothelial cell proliferation and ccRCC growth. Because CXCR1 and CXCR2 are present on both endothelial and ccRCC cells, their inhibition affected both the tumor vasculature and the proliferation of tumor cells. Our results highlight the CXCL7/CXCR1/CXCR2 axis as a pertinent target for the treatment of ccRCC.


Cancer Research | 2016

Genetic Disruption of the Multifunctional CD98/LAT1 Complex Demonstrates the Key Role of Essential Amino Acid Transport in the Control of mTORC1 and Tumor Growth.

Yann Cormerais; Sandy Giuliano; Renaud Lefloch; Benoît Front; Jerome Durivault; Eric Tambutté; Pierre-André Massard; Laura R. de la Ballina; Hitoshi Endou; Michael F. Wempe; Manuel Palacín; Scott K. Parks; Jacques Pouysségur

The CD98/LAT1 complex is overexpressed in aggressive human cancers and is thereby described as a potential therapeutic target. This complex promotes tumorigenesis with CD98 (4F2hc) engaging β-integrin signaling while LAT1 (SLC7A5) imports essential amino acids (EAA) and promotes mTORC1 activity. However, it is unclear as to which member of the heterodimer carries the most prevalent protumoral action. To answer this question, we explored the tumoral potential of each member by gene disruption of CD98, LAT1, or both and by inhibition of LAT1 with the selective inhibitor (JPH203) in six human cancer cell lines from colon, lung, and kidney. Each knockout respectively ablated 90% (CD98 KO: ) and 100% (LAT1 KO: ) of Na(+)-independent leucine transport activity. LAT1 KO: or JPH203-treated cells presented an amino acid stress response with ATF4, GCN2 activation, mTORC1 inhibition, and severe in vitro and in vivo tumor growth arrest. We show that this severe growth phenotype is independent of the level of expression of CD98 in the six tumor cell lines. Surprisingly, CD98 KO: cells with only 10% EAA transport activity displayed a normal growth phenotype, with mTORC1 activity and tumor growth rate undistinguishable from wild-type cells. However, CD98 KO: cells became extremely sensitive to inhibition or genetic disruption of LAT1 (CD98 KO: /LAT1 KO: ). This finding demonstrates that the tumoral potential of CD98 KO: cells is due to residual LAT1 transport activity. Therefore, these findings clearly establish that LAT1 transport activity is the key growth-limiting step of the heterodimer and advocate the pharmacology development of LAT1 transporter inhibitors as a very promising anticancer target. Cancer Res; 76(15); 4481-92. ©2016 AACR.


British Journal of Pharmacology | 2014

Revisiting CFTR inhibition: a comparative study of CFTRinh‐172 and GlyH‐101 inhibitors

Nicolas Melis; Michel Tauc; Marc Cougnon; Saïd Bendahhou; Sandy Giuliano; Isabelle Rubera; Christophe Duranton

For decades, inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have been used as tools to investigate the role and function of CFTR conductance in cystic fibrosis research. In the early 2000s, two new and potent inhibitors of CFTR, CFTRinh‐172 and GlyH‐101, were described and are now widely used to inhibit specifically CFTR. However, despite some evidence, the effects of both drugs on other types of Cl−‐conductance have been overlooked. In this context, we explore the specificity and the cellular toxicity of both inhibitors in CFTR‐expressing and non–CFTR‐expressing cells.

Collaboration


Dive into the Sandy Giuliano's collaboration.

Top Co-Authors

Avatar

Gilles Pagès

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Bonet

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corine Bertolotto

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Damien Ambrosetti

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Chamorey

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge