Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandy P. Harrison is active.

Publication


Featured researches published by Sandy P. Harrison.


Science | 2009

Fire in the Earth system.

David M. J. S. Bowman; Jennifer K. Balch; Paulo Artaxo; William J. Bond; Jean M. Carlson; Mark A. Cochrane; Ruth S. DeFries; John C. Doyle; Sandy P. Harrison; Fay H. Johnston; Jon E. Keeley; Meg A. Krawchuk; Christian A. Kull; J. Brad Marston; Max A. Moritz; I. Colin Prentice; Christopher I. Roos; Andrew C. Scott; Thomas W. Swetnam; Guido R. van der Werf; Stephen J. Pyne

Burn, Baby, Burn Wildfires can have dramatic and devastating effects on landscapes and human structures and are important agents in environmental transformation. Their impacts on nonanthropocentric aspects of the environment, such as ecosystems, biodiversity, carbon reserves, and climate, are often overlooked. Bowman et al. (p. 481) review what is known and what is needed to develop a holistic understanding of the role of fire in the Earth system, particularly in view of the pervasive impact of fires and the likelihood that they will become increasingly difficult to control as climate changes. Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.


Journal of Geophysical Research | 1999

Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments

Natalie M. Mahowald; Karen E. Kohfeld; Margaret Hansson; Yves Balkanski; Sandy P. Harrison; I. Colin Prentice; Michael Schulz; Henning Rodhe

Mineral dust aerosols in the atmosphere have the potential to affect the global climate by influencing the radiative balance of the atmosphere and the supply of micronutrients to the ocean. Ice and marine sediment cores indicate that dust deposition from the atmosphere was at some locations 2–20 times greater during glacial periods, raising the possibility that mineral aerosols might have contributed to climate change on glacial-interglacial time scales. To address this question, we have used linked terrestrial biosphere, dust source, and atmospheric transport models to simulate the dust cycle in the atmosphere for current and last glacial maximum (LGM) climates. We obtain a 2.5-fold higher dust loading in the entire atmosphere and a twenty-fold higher loading in high latitudes, in LGM relative to present. Comparisons to a compilation of atmospheric dust deposition flux estimates for LGM and present in marine sediment and ice cores show that the simulated flux ratios are broadly in agreement with observations; differences suggest where further improvements in the simple dust model could be made. The simulated increase in high-latitude dustiness depends on the expansion of unvegetated areas, especially in the high latitudes and in central Asia, caused by a combination of increased aridity and low atmospheric [CO2]. The existence of these dust source areas at the LGM is supported by pollen data and loess distribution in the northern continents. These results point to a role for vegetation feedbacks, including climate effects and physiological effects of low [CO2], in modulating the atmospheric distribution of dust.


Journal of Geophysical Research | 2002

Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study

Ina Tegen; Sandy P. Harrison; Karen E. Kohfeld; I. Colin Prentice; Michael T. Coe; Martin Heimann

[1] We present a model of the dust cycle that successfully predicts dust emissions as determined by land surface properties, monthly vegetation and snow cover, and 6-hourly surface wind speeds for the years 1982–1993. The model takes account of the role of dry lake beds as preferential source areas for dust emission. The occurrence of these preferential sources is determined by a water routing and storage model. The dust source scheme also explicitly takes into account the role of vegetation type as well as monthly vegetation cover. Dust transport is computed using assimilated winds for the years 1987–1990. Deposition of dust occurs through dry and wet deposition, where subcloud scavenging is calculated using assimilated precipitation fields. Comparison of simulated patterns of atmospheric dust loading with the Total Ozone Mapping Spectrometer satellite absorbing aerosol index shows that the model produces realistic results from daily to interannual timescales. The magnitude of dust deposition agrees well with sediment flux data from marine sites. Emission of submicron dust from preferential source areas are required for the computation of a realistic dust optical thickness. Sensitivity studies show that Asian dust source strengths are particularly sensitive to the seasonality of vegetation cover.


Earth-Science Reviews | 2001

DIRTMAP: The geological record of dust

Karen E. Kohfeld; Sandy P. Harrison

Atmospheric dust is an important feedback in the climate system, potentially affecting the radiative balance and chemical composition of the atmosphere and providing nutrients to terrestrial and marine ecosystems. Yet the potential impact of dust on the climate system, both in the anthropogenically disturbed future and the naturally varying past, remains to be quantified. The geologic record of dust provides the opportunity to test earth system models designed to simulate dust. Records of dust can be obtained from ice cores, marine sediments, and terrestrial (loess) deposits. Although rarely unequivocal, these records document a variety of processes (source, transport and deposition) in the dust cycle, stored in each archive as changes in clay mineralogy, isotopes, grain size, and concentration of terrigenous materials. Although the extraction of information from each type of archive is slightly different, the basic controls on these dust indicators are the same. Changes in the dust flux and particle size might be controlled by a combination of (a) source area extent, (b) dust emission efficiency (wind speed) and atmospheric transport, (c) atmospheric residence time of dust, and/or (d) relative contributions of dry settling and rainout of dust. Similarly, changes in mineralogy reflect (a) source area mineralogy and weathering and (b) shifts in atmospheric transport. The combination of these geological data with process-based, forward-modelling schemes in global earth system models provides an excellent means of achieving a comprehensive picture of the global pattern of dust accumulation rates, their controlling mechanisms, and how those mechanisms may vary regionally. The Dust Indicators and Records of Terrestrial and MArine Palaeoenvironments (DIRTMAP) data base has been established to provide a global palaeoenvironmental data set that can be used to validate earth system model simulations of the dust cycle over the past 150,000 years.


Journal of Geophysical Research | 2003

Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

Jed O. Kaplan; Nancy H. Bigelow; I. C. Prentice; Sandy P. Harrison; Patrick J. Bartlein; Torben R. Christensen; Wolfgang Cramer; Nadya Matveyeva; A. D. McGuire; David F. Murray; Vy Razzhivin; Benjamin Smith; Donald A. Walker; P. M. Anderson; Andrei Andreev; Linda B. Brubaker; Mary E. Edwards; A. V. Lozhkin

Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55degreesN, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to >700 ppm) at high latitudes were slight compared with the effects of the change in climate.


Geophysical Research Letters | 1999

Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP)

Sylvie Joussaume; Karl E. Taylor; Pascale Braconnot; J. F. B. Mitchell; J. E. Kutzbach; Sandy P. Harrison; I. C. Prentice; Anthony J. Broccoli; Ayako Abe-Ouchi; Patrick J. Bartlein; C. Bonfils; B. Dong; Joël Guiot; K. Herterich; Chris Hewitt; D. Jolly; Ji Won Kim; A. Kislov; A. Kitoh; Marie-France Loutre; Valérie Masson; B. J. McAvaney; N. McFarlane; N. de Noblet; W. R. Peltier; Jean-Yves Peterschmitt; David Pollard; D. Rind; J. F. Royer; Michael E. Schlesinger

Amplification of the northern hemisphere seasonal cycle of insolation during the mid-Holocene causes a northward shift of the main regions of monsoon precipitation over Africa and India in all 18 simulations conducted for the Paleoclimate Modeling Intercomparison Project (PMIP). Differences among simulations are related to differences in model formulation. Despite qualitative agreement with paleoecological estimates of biome shifts, the magnitude of the monsoon increases over northern Africa are underestimated by all the models.


Earth-Science Reviews | 2001

The role of dust in climate changes today, at the last glacial maximum and in the future

Sandy P. Harrison; Karen E. Kohfeld; Caroline Roelandt; Tanguy Claquin

Natural mineral aerosol (dust) is an active component of the climate system and plays multiple roles in mediating physical and biogeochemical exchanges between the atmosphere, land surface and ocean. Changes in the amount of dust in the atmosphere are caused both by changes in climate (precipitation, wind strength, regional moisture balance) and changes in the extent of dust sources caused by either anthropogenic or climatically induced changes in vegetation cover. Models of the global dust cycle take into account the physical controls on dust deflation from prescribed source areas (based largely on soil wetness and vegetation cover thresholds), dust transport within the atmospheric column, and dust deposition through sedimentation and scavenging by precipitation. These models successfully reproduce the first-order spatial and temporal patterns in atmospheric dust loading under modern conditions. Atmospheric dust loading was as much as an order-of-magnitude larger than today during the last glacial maximum (LGM). While the observed increase in emissions from northern Africa can be explained solely in terms of climate changes (colder, drier and windier glacial climates), increased emissions from other regions appear to have been largely a response to climatically induced changes in vegetation cover and hence in the extent of dust source areas. Model experiments suggest that the increased dust loading in tropical regions had an effect on radiative forcing comparable to that of low glacial CO2 levels. Changes in land-use are already increasing the dust loading of the atmosphere. However, simulations show that anthropogenically forced climate changes substantially reduce the extent and productivity of natural dust sources. Positive feedbacks initiated by a reduction of dust emissions from natural source areas on both radiative forcing and atmospheric CO2 could substantially mitigate the impacts of land-use changes, and need to be considered in climate change assessments.


Quaternary Science Reviews | 1993

European lakes as palaeohydrological and palaeoclimatic indicators

Sandy P. Harrison; Gunnar Digerfeldt

Abstract Lakes in temperate regions have fluctuated in size on annual to millenial time scales. Changes in water level or depth can be reconstructed by applying geomorphic, sedimentological and biostratigraphic methods to transects of sediment cores. This systematic, field-based approach has been used at a number of sites in Europe. It is illustrated by reconstructions of water-level changes in lakes from southern Sweden. These lakes have shown broadly synchronous changes during the Holocene. Such synchronous changes in water levels at several sites in a region reflect climatic changes. Inferences about the mechanism of the climatic change depend on identifying both synchronous changes within a region and differences in the direction, magnitude and timing of lake-level changes between regions. Continental compilations of lake-level data are therefore necessary. Detailed studies are not available from enough sites, but the interpretation of already existing stratigraphic and biostratigraphic data in terms of lake-level changes has greatly increased the number of sites available for a continental-scale synthesis in Europe. This eclectic, literature-based approach is illustrated with examples from southern Europe. Lakes in the Mediterranean region were high around the glacial maximum and again somtime during the first half of the Holocene. In the western Mediterranean, the peak of late-glacial aridity occurred at 15,000–16,000 BP and the lakes were already high again by 12,000 BP. In the east, maximum late-glacial aridity occurred between 13,000 and 11,000 BP and there was a gradual return to wetter climates during the early Holocene such that 9000 BP was more arid than 6000 BP. Most lakes in the Mediterranean region were high at 6000 BP. The transition to arid conditions after 5000 BP occurred abruptly in the west and more gradually in the east. The lakes of southern Sweden indicate drier climates in the early Holocene (ca. 9000 BP), more effective moisture between 8000 and 6000 BP, increased aridity between 5500 and 3500 BP, and increased effective moisture again during the last 3000 years. The history of lake-level changes in southern Sweden and the Mediterranean region can be partially explained in terms of changes in the direct effects of insolation, and in the strength and position of the Westerlies and of the subtropical high pressure cell during the Late Quaternary.


Quaternary Science Reviews | 1998

SIMULATED CLIMATE AND BIOMES OF AFRICA DURING THE LATE QUATERNARY: COMPARISON WITH POLLEN AND LAKE STATUS DATA

D. Jolly; Sandy P. Harrison; B. Damnati; Raymonde Bonnefille

New compilations of African pollen and lake data are compared with climate (CCM1, NCAR, Boulder) and vegetation (BIOME 1.2, GSG, Lund) simulations for the last glacial maximum (LGM) and early to mid-Holocene (EMH). The simulated LGM climate was ca 4°C colder and drier than present, with maximum reduction in precipitation in semi-arid regions. Biome simulations show lowering of montane vegetation belts and expansion of southern xerophytic associations, but no change in the distribution of deserts and tropical rain forests. The lakes show LGM conditions similar or drier than present throughout northern and tropical Africa. Pollen data indicate lowering of montane vegetation belts, the stability of the Sahara, and a reduction of rain forest. The paleoenvironmental data are consistent with the simulated changes in temperature and moisture budgets, although they suggest the climate model underestimates equatorial aridity. EMH simulations show temperatures slightly less than present and increased monsoonal precipitation in the eastern Sahara and East Africa. Biome simulations show an upward shift of montane vegetation belts, fragmentation of xerophytic vegetation in southern Africa, and a major northward shift of the southern margin of the eastern Sahara. The lakes indicate conditions wetter than present across northern Africa. Pollen data show an upward shift of the montane forests, the northward shift of the southern margin of the Sahara, and a major extension of tropical rain forest. The lake and pollen data confirm monsoon expansion in eastern Africa, but the climate model fails to simulate the wet conditions in western Africa.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Wildfire responses to abrupt climate change in North America

Jennifer R. Marlon; Patrick J. Bartlein; Megan K. Walsh; Sandy P. Harrison; Kendrick J. Brown; Mary E. Edwards; Phil E. Higuera; Mitchell J. Power; R. S. Anderson; Christy E. Briles; Andrea Brunelle; Christopher Carcaillet; M. Daniels; Fung S. Hu; Matthew J. LaVoie; Colin J. Long; T. Minckley; Pierre J. H. Richard; Andrew C. Scott; David S. Shafer; Willy Tinner; Charles E. Umbanhowar; Cathy Whitlock

It is widely accepted, based on data from the last few decades and on model simulations, that anthropogenic climate change will cause increased fire activity. However, less attention has been paid to the relationship between abrupt climate changes and heightened fire activity in the paleorecord. We use 35 charcoal and pollen records to assess how fire regimes in North America changed during the last glacial–interglacial transition (15 to 10 ka), a time of large and rapid climate changes. We also test the hypothesis that a comet impact initiated continental-scale wildfires at 12.9 ka; the data do not support this idea, nor are continent-wide fires indicated at any time during deglaciation. There are, however, clear links between large climate changes and fire activity. Biomass burning gradually increased from the glacial period to the beginning of the Younger Dryas. Although there are changes in biomass burning during the Younger Dryas, there is no systematic trend. There is a further increase in biomass burning after the Younger Dryas. Intervals of rapid climate change at 13.9, 13.2, and 11.7 ka are marked by large increases in fire activity. The timing of changes in fire is not coincident with changes in human population density or the timing of the extinction of the megafauna. Although these factors could have contributed to fire-regime changes at individual sites or at specific times, the charcoal data indicate an important role for climate, and particularly rapid climate change, in determining broad-scale levels of fire activity.

Collaboration


Dive into the Sandy P. Harrison's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bette L. Otto-Bliesner

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Kutzbach

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge