Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick J. Bartlein is active.

Publication


Featured researches published by Patrick J. Bartlein.


Ecological Monographs | 2004

Late-quaternary vegetation dynamics in north america: Scaling from taxa to biomes

John W. Williams; Bryan N. Shuman; Thompson Webb; Patrick J. Bartlein; Phillip Leduc

This paper integrates recent efforts to map the distribution of biomes for the late Quaternary with the detailed evidence that plant species have responded individual- istically to climate change at millennial timescales. Using a fossil-pollen data set of over 700 sites, we review late-Quaternary vegetation history in northern and eastern North America across levels of ecological organization from individual taxa to biomes, and apply the insights gained from this review to critically examine the biome maps generated from the pollen data. Higher-order features of the vegetation (e.g., plant associations, physiog- nomy) emerge from individualistic responses of plant taxa to climate change, and different representations of vegetation history reveal different aspects of vegetation dynamics. Veg- etation distribution and composition were relatively stable during full-glacial times (21 000- 17 000 yr BP) (calendar years) and during the mid- to late Holocene (7000-500 yr BP), but changed rapidly during the late-glacial period and early Holocene (16 000-8 000 yr BP) and after 500 yr BP. Shifts in plant taxon distributions were characterized by individ- ualistic changes in population abundances and ranges and included large east-west shifts in distribution in addition to the northward redistribution of most taxa. Modern associations such as Fagus-Tsuga and Picea-Alnus-Betula date to the early Holocene, whereas other associations common to the late-glacial period (e.g., Picea-Cyperaceae-Fraxinus-Ostrya/ Carpinus) no longer exist. Biomes are dynamic entities that have changed in distribution, composition, and structure over time. The late-Pleistocene suite of biomes is distinct from those that grew during the Holocene. The pollen-based biome reconstructions are able to capture the major features of late-Quaternary vegetation but downplay the magnitude and variety of vegetational responses to climate change by (1) limiting apparent land-cover change to ecotones, (2) masking internal variations in biome composition, and (3) obscuring the range shifts and changes in abundance among individual taxa. The compositional and structural differences between full-glacial and recent biomes of the same type are similar to or greater than the spatial heterogeneity in the composition and structure of present-day biomes. This spatial and temporal heterogeneity allows biome maps to accommodate in- dividualistic behavior among species but masks climatically important variations in taxo- nomic composition as well as structural differences between modern biomes and their ancient counterparts.


Ecology | 1991

Vegetation and Climate Change in Eastern North America Since the Last Glacial Maximum

I. Colin Prentice; Patrick J. Bartlein; Thompson Webb

Response surfaces describing the empirical dependence of surface pollen percentages of 13 taxa on three standard climatic variables (mean July temperature, mean January temperature, and mean annual precipitation) in eastern North America were used to infer past climates from palynological data. Inferred climates at 3000-yr intervals from 18 000 years ago to the present, based on six taxa (spruce, birch, northern pines, oak, southern pines, and prairie forbs), were used to generate time series of simulated isopoll maps for these taxa and seven others (hickory, fir, beech, hemlock, elm, alder, and sedge). The simulations captured the essential features of the observed isopoll maps for both sets of taxa, including differences in migration patterns during the past 10 000 yr that have previously been attributed to differential migration lag. These results establish that the continental-scale vegetation patterns have responded to continuous changes in climate from the last glacial maximum to the present, with lags < 1500 yr. The inferred climatic changes include seasonality changes consistent with orbitally controlled changes in inso- lation, and shifts in temperature and moisture gradients that are consistent with modelled climatic interactions of the insolation changes with the shrinking Laurentide ice sheet. These results pose new ecological questions about the processes by which vegetated land- scapes approach dynamic equilibrium with their changing environment.


BioScience | 2001

Global Change in Forests: Responses of Species, Communities, and Biomes

Andrew J. Hansen; Ronald P. Neilson; Virginia H. Dale; Curtis H. Flather; Louis R. Iverson; David J. Currie; Sarah L. Shafer; Rosamonde R. Cook; Patrick J. Bartlein

G change is often perceived as human-induced modifications in climate. Indeed, human activities have undeniably altered the atmosphere, and probably the climate as well (Watson et al. 1998). At the same time, most of the world’s forests have also been extensively modified by human use of the land (Houghton 1994). Thus, climate and land use are two prongs of human-induced global change. The effect of these forces on forests is mediated by the organisms within forests. Consideration of climate, land use, and biological diversity is key to understanding forest response to global change. Biological diversity refers to the variety of life at organizational levels from genotypes through biomes (Franklin 1993). The responses of ecological systems to global change reflect the organisms that are within them. While ecologists have sometimes not seen the forest for the trees, so to speak, it is also true that forests cannot be understood without knowledge of the trees and other component species. It is the responses of individual organisms that begin the cascade of ecological processes that are manifest as changes in system properties, some of which feed back to influence climate and land use (Figure 1). Beyond its role in ecosystems, biodiversity is invaluable to humans for foods, medicines, genetic information, recreation, and spiritual renewal (Pimentel et al. 1997). Thus, global changes that affect the distribution and abundance of organisms will affect future human well-being and land use, as well as, possibly, the climate. This article serves as a primer on forest biodiversity as a key component of global change. We first synthesize current knowledge of interactions among climate, land use, and biodiversity. We then summarize the results of new analyses on the potential effects of human-induced climate change on forest biodiversity. Our models project how possible future climates may modify the distributions of environments required by various species, communities, and biomes. Current knowledge, models, and funding did not allow these analyses to examine the population processes (e.g., dispersal, regeneration) that would mediate the responses of organisms to environmental change. It was also not possible to model the important effects of land use, natural disturbance, and other factors on the response of biodiversity to climate change. Despite these limitations, the analyses discussed herein are among the most comprehensive projections of climate change effects on forest biodiversity yet conducted. We conclude with discussions of limitations, research needs, and strategies for coping with potential future global change.


Journal of Geophysical Research | 2003

Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

Jed O. Kaplan; Nancy H. Bigelow; I. C. Prentice; Sandy P. Harrison; Patrick J. Bartlein; Torben R. Christensen; Wolfgang Cramer; Nadya Matveyeva; A. D. McGuire; David F. Murray; Vy Razzhivin; Benjamin Smith; Donald A. Walker; P. M. Anderson; Andrei Andreev; Linda B. Brubaker; Mary E. Edwards; A. V. Lozhkin

Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55degreesN, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to >700 ppm) at high latitudes were slight compared with the effects of the change in climate.


Geophysical Research Letters | 1999

Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP)

Sylvie Joussaume; Karl E. Taylor; Pascale Braconnot; J. F. B. Mitchell; J. E. Kutzbach; Sandy P. Harrison; I. C. Prentice; Anthony J. Broccoli; Ayako Abe-Ouchi; Patrick J. Bartlein; C. Bonfils; B. Dong; Joël Guiot; K. Herterich; Chris Hewitt; D. Jolly; Ji Won Kim; A. Kislov; A. Kitoh; Marie-France Loutre; Valérie Masson; B. J. McAvaney; N. McFarlane; N. de Noblet; W. R. Peltier; Jean-Yves Peterschmitt; David Pollard; D. Rind; J. F. Royer; Michael E. Schlesinger

Amplification of the northern hemisphere seasonal cycle of insolation during the mid-Holocene causes a northward shift of the main regions of monsoon precipitation over Africa and India in all 18 simulations conducted for the Paleoclimate Modeling Intercomparison Project (PMIP). Differences among simulations are related to differences in model formulation. Despite qualitative agreement with paleoecological estimates of biome shifts, the magnitude of the monsoon increases over northern Africa are underestimated by all the models.


Ecology | 2009

Projected climate-induced faunal change in the Western Hemisphere

Joshua J. Lawler; Sarah L. Shafer; Denis White; Peter Kareiva; Edwin P. Maurer; Andrew R. Blaustein; Patrick J. Bartlein

Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere-ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today.


Journal of Biogeography | 1986

Climatic response surfaces from pollen data for some eastern North American taxa

Patrick J. Bartlein; I. Colin Prentice; Thompson Webb

Ecological response surfaces are nonlinear functions describing the way in which the abundances of taxa depend on the joint effects of two or more environmental variables. Continental-scale patterns in the relative abundances of plant taxa are dominated by the effects of macroclimate on the competitive balance among taxa. Pollen analyses record such regional variations for major vegetation components. Empirical ecological response surfaces were derived from high-resolution climate models to yield testable reconstructions of vegeta- eastern North America. The surfaces were obtained by second- or third-degree polynomial regression on two predictor variables, mean July temperature and annual precipitation, with various nonlinear transformations of variables to allow flexibility of shape. Response surface analysis consists of a remapping of abundance patterns from geographic space into climate space, and complements efforts to explain distri- butions in terms of biological processes. Each fitted surface is unique. The surfaces focus attention on the climatic location of range limits and optima, and on less obvious phenomena such as the spatial pattern in the relative sensitivity of different taxa to spatial variation in the climatic variables. Given certain assump- tions, response surfaces based directly on pollen data may be used collectively in a global nonlinear method for estimating past climates from postglacial pollen data. Such response surfaces may also be coupled to palaeoclimatic simulations from high-resolution climate models to yield testable reconstructions of vegeta- tional history.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Wildfire responses to abrupt climate change in North America

Jennifer R. Marlon; Patrick J. Bartlein; Megan K. Walsh; Sandy P. Harrison; Kendrick J. Brown; Mary E. Edwards; Phil E. Higuera; Mitchell J. Power; R. S. Anderson; Christy E. Briles; Andrea Brunelle; Christopher Carcaillet; M. Daniels; Fung S. Hu; Matthew J. LaVoie; Colin J. Long; T. Minckley; Pierre J. H. Richard; Andrew C. Scott; David S. Shafer; Willy Tinner; Charles E. Umbanhowar; Cathy Whitlock

It is widely accepted, based on data from the last few decades and on model simulations, that anthropogenic climate change will cause increased fire activity. However, less attention has been paid to the relationship between abrupt climate changes and heightened fire activity in the paleorecord. We use 35 charcoal and pollen records to assess how fire regimes in North America changed during the last glacial–interglacial transition (15 to 10 ka), a time of large and rapid climate changes. We also test the hypothesis that a comet impact initiated continental-scale wildfires at 12.9 ka; the data do not support this idea, nor are continent-wide fires indicated at any time during deglaciation. There are, however, clear links between large climate changes and fire activity. Biomass burning gradually increased from the glacial period to the beginning of the Younger Dryas. Although there are changes in biomass burning during the Younger Dryas, there is no systematic trend. There is a further increase in biomass burning after the Younger Dryas. Intervals of rapid climate change at 13.9, 13.2, and 11.7 ka are marked by large increases in fire activity. The timing of changes in fire is not coincident with changes in human population density or the timing of the extinction of the megafauna. Although these factors could have contributed to fire-regime changes at individual sites or at specific times, the charcoal data indicate an important role for climate, and particularly rapid climate change, in determining broad-scale levels of fire activity.


Science | 2012

Development and Disintegration of Maya Political Systems in Response to Climate Change

Douglas J. Kennett; Sebastian F.M. Breitenbach; Valorie V. Aquino; Yemane Asmerom; Jaime Awe; James U.L. Baldini; Patrick J. Bartlein; Brendan J. Culleton; Claire Ebert; Christopher S. Jazwa; Martha J. Macri; Norbert Marwan; Victor J. Polyak; Keith M. Prufer; Harriet E. Ridley; Harald Sodemann; Bruce Winterhalder; Gerald H. Haug

Maya and Climate Climate has affected the vitality of many different societies in the past, as shown by numerous records across the globe and throughout human history. One of the most obvious and spectacular examples of this is from the Classic Maya civilization, whose advanced culture left highly detailed records of all aspects of their existence between 300 and 1000 C.E. Kennett et al. (p. 788; see the cover) present a detailed climate record derived from a stalagmite collected from a cave in Belize, in the midst of the Classic Maya settlement. The fine resolution and precise dating of the record allows changes in precipitation to be related to the politics, war, and population fluctuations of the Mayans. A record of rainfall from a stalagmite in southern Belize provides a context for better understanding Maya civilization. The role of climate change in the development and demise of Classic Maya civilization (300 to 1000 C.E.) remains controversial because of the absence of well-dated climate and archaeological sequences. We present a precisely dated subannual climate record for the past 2000 years from Yok Balum Cave, Belize. From comparison of this record with historical events compiled from well-dated stone monuments, we propose that anomalously high rainfall favored unprecedented population expansion and the proliferation of political centers between 440 and 660 C.E. This was followed by a drying trend between 660 and 1000 C.E. that triggered the balkanization of polities, increased warfare, and the asynchronous disintegration of polities, followed by population collapse in the context of an extended drought between 1020 and 1100 C.E.


Quaternary Research | 1984

Holocene climatic change in the northern Midwest: Pollen-derived estimates

Patrick J. Bartlein; Thompson Webb; E. Fleri

Mapping of Holocene pollen data in the midwestern United States has revealed several broadscale vegetational changes that can be interpreted in climatic terms. These changes include (1) the early Holocene northward movement of the spruce-dominated forest and its later southward movement after 3000 yr B.P. and (2) the eastward movement of the prairie/forest border into southwestern Wisconsin by 8000 yr B.P. and its subsequent westward retreat after 6000 yr B.P. When certain basic assumptions are met, multiple regression models can be derived from modern pollen and climate data and used to transform the pollen record of these vegetational changes into quantitative estimates of temperature or precipitation. To maximize the reliability of the regression equations, we followed a sequence of procedures that minimize violations of the assumptions that underlie regression analysis. Reconstructions of precipitation during the Holocene indicated that from 9000 to 6000 yr B.P. precipitation decreased by 10 to 25% over much of the Midwest, while mean July temperature increased by 0.5° to 2.0°C. At 6000 yr B.P. precipitation was less than 80% of its modern values over parts of Wisconsin and Minnesota. After 6000 yr B.P. precipitation generally increased, while mean July temperature decreased in the north, and increased in the south. The time of the maximum temperature varies within the Midwest and is earlier in the north and later in the south.

Collaboration


Dive into the Patrick J. Bartlein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cathy Whitlock

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert S. Thompson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Sarah L. Shafer

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven W. Hostetler

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John W. Williams

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge