Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sangeeta Chavan is active.

Publication


Featured researches published by Sangeeta Chavan.


Science | 2011

Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit

Mauricio Rosas-Ballina; Peder S. Olofsson; Mahendar Ochani; Sergio Valdes-Ferrer; Yaakov A. Levine; Colin Reardon; Michael W. Tusche; Valentin A. Pavlov; Ulf Andersson; Sangeeta Chavan; Tak W. Mak; Kevin J. Tracey

A neural circuit that involves a specialized population of memory T cells regulates the immune response. Neural circuits regulate cytokine production to prevent potentially damaging inflammation. A prototypical vagus nerve circuit, the inflammatory reflex, inhibits tumor necrosis factor–α production in spleen by a mechanism requiring acetylcholine signaling through the α7 nicotinic acetylcholine receptor expressed on cytokine-producing macrophages. Nerve fibers in spleen lack the enzymatic machinery necessary for acetylcholine production; therefore, how does this neural circuit terminate in cholinergic signaling? We identified an acetylcholine-producing, memory phenotype T cell population in mice that is integral to the inflammatory reflex. These acetylcholine-producing T cells are required for inhibition of cytokine production by vagus nerve stimulation. Thus, action potentials originating in the vagus nerve regulate T cells, which in turn produce the neurotransmitter, acetylcholine, required to control innate immune responses.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release

Huan Yang; Hulda Hreggvidsdottir; Karin Palmblad; Haichao Wang; Mahendar Ochani; Jianhua Li; Ben Lu; Sangeeta Chavan; Mauricio Rosas-Ballina; Yousef Al-Abed; Shizuo Akira; Angelika Bierhaus; Helena Erlandsson-Harris; Ulf Andersson; Kevin J. Tracey

During infection, vertebrates develop “sickness syndrome,” characterized by fever, anorexia, behavioral withdrawal, acute-phase protein responses, and inflammation. These pathophysiological responses are mediated by cytokines, including TNF and IL-1, released during the innate immune response to invasion. Even in the absence of infection, qualitatively similar physiological syndromes occur following sterile injury, ischemia reperfusion, crush injury, and autoimmune-mediated tissue damage. Recent advances implicate high-mobility group box 1 (HMGB1), a nuclear protein with inflammatory cytokine activities, in stimulating cytokine release. HMGB1 is passively released during cell injury and necrosis, or actively secreted during immune cell activation, positioning it at the intersection of sterile and infection-associated inflammation. To date, eight candidate receptors have been implicated in mediating the biological responses to HMGB1, but the mechanism of HMGB1-dependent cytokine release is unknown. Here we show that Toll-like receptor 4 (TLR4), a pivotal receptor for activation of innate immunity and cytokine release, is required for HMGB1-dependent activation of macrophage TNF release. Surface plasmon resonance studies indicate that HMGB1 binds specifically to TLR4, and that this binding requires a cysteine in position 106. A wholly synthetic 20-mer peptide containing cysteine 106 from within the cytokine-stimulating B box mediates TLR4-dependent activation of macrophage TNF release. Inhibition of TLR4 binding with neutralizing anti-HMGB1 mAb or by mutating cysteine 106 prevents HMGB1 activation of cytokine release. These results have implications for rationale, design, and development of experimental therapeutics for use in sterile and infectious inflammation.


Nature | 2012

Novel role of PKR in inflammasome activation and HMGB1 release

Ben Lu; Takahisa Nakamura; Karen Inouye; Jianhua Li; Yiting Tang; Peter Lundbäck; Sergio Valdes-Ferrer; Peder S. Olofsson; Thomas Kalb; Jesse Roth; Yong-Rui Zou; Helena Erlandsson-Harris; Huan Yang; Jenny P.-Y. Ting; Haichao Wang; Ulf Andersson; Daniel J. Antoine; Sangeeta Chavan; Gökhan S. Hotamisligil; Kevin J. Tracey

The inflammasome regulates the release of caspase activation-dependent cytokines, including interleukin (IL)-1β, IL-18 and high-mobility group box 1 (HMGB1). By studying HMGB1 release mechanisms, here we identify a role for double-stranded RNA-dependent protein kinase (PKR, also known as EIF2AK2) in inflammasome activation. Exposure of macrophages to inflammasome agonists induced PKR autophosphorylation. PKR inactivation by genetic deletion or pharmacological inhibition severely impaired inflammasome activation in response to double-stranded RNA, ATP, monosodium urate, adjuvant aluminium, rotenone, live Escherichia coli, anthrax lethal toxin, DNA transfection and Salmonella typhimurium infection. PKR deficiency significantly inhibited the secretion of IL-1β, IL-18 and HMGB1 in E. coli-induced peritonitis. PKR physically interacts with several inflammasome components, including NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3), NLRP1, NLR family CARD domain-containing protein 4 (NLRC4), absent in melanoma 2 (AIM2), and broadly regulates inflammasome activation. PKR autophosphorylation in a cell-free system with recombinant NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC, also known as PYCARD) and pro-caspase-1 reconstitutes inflammasome activity. These results show a crucial role for PKR in inflammasome activation, and indicate that it should be possible to pharmacologically target this molecule to treat inflammation.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia

Mauricio Rosas-Ballina; Mahendar Ochani; William R. Parrish; Kanta Ochani; Yael Tobi Harris; Jared M. Huston; Sangeeta Chavan; Kevin J. Tracey

The autonomic nervous system maintains homeostasis through its sympathetic and parasympathetic divisions. During infection, cells of the immune system release cytokines and other mediators that cause fever, hypotension, and tissue injury. Although the effect of cytokines on the nervous system has been known for decades, only recently has it become evident that the autonomic nervous system, in turn, regulates cytokine production through neural pathways. We have previously shown that efferent vagus nerve signals regulate cytokine production through the nicotinic acetylcholine receptor subunit α7, a mechanism termed “the cholinergic antiinflammatory pathway.” Here, we show that vagus nerve stimulation during endotoxemia specifically attenuates TNF production by spleen macrophages in the red pulp and the marginal zone. Administration of nicotine, a pharmacological agonist of α7, attenuated TNF immunoreactivity in these specific macrophage subpopulations. Synaptophysin-positive nerve endings were observed in close apposition to red pulp macrophages, but they do not express choline acetyltransferase or vesicular acetylcholine transporter. Surgical ablation of the splenic nerve and catecholamine depletion by reserpine indicate that these nerves are catecholaminergic and are required for functional inhibition of TNF production by vagus nerve stimulation. Thus, the cholinergic antiinflammatory pathway regulates TNF production in discrete macrophage populations via two serially connected neurons: one preganglionic, originating in the dorsal motor nucleus of the vagus nerve, and the second postganglionic, originating in the celiac-superior mesenteric plexus, and projecting in the splenic nerve.


Critical Care Medicine | 2007

Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis

Jared M. Huston; Margot Gallowitsch-Puerta; Mahendar Ochani; Kanta Ochani; Renqi Yuan; Mauricio Rosas-Ballina; Mala Ashok; Richard S. Goldstein; Sangeeta Chavan; Valentin A. Pavlov; Christine N. Metz; Huan Yang; Christopher J. Czura; Haichao Wang; Kevin J. Tracey

Objective: Electrical vagus nerve stimulation inhibits proinflammatory cytokine production and prevents shock during lethal systemic inflammation through an [alpha]7 nicotinic acetylcholine receptor ([alpha]7nAChR)‐dependent pathway to the spleen, termed the cholinergic anti‐inflammatory pathway. Pharmacologic [alpha]7nAChR agonists inhibit production of the critical proinflammatory mediator high mobility group box 1 (HMGB1) and rescue mice from lethal polymicrobial sepsis. Here we developed a method of transcutaneous mechanical vagus nerve stimulation and then investigated whether this therapy can protect mice against sepsis lethality. Design: Prospective, randomized study. Setting: Institute‐based research laboratory. Subjects: Male BALB/c mice. Interventions: Mice received lipopolysaccharide to induce lethal endotoxemia or underwent cecal ligation and puncture to induce polymicrobial sepsis. Mice were then randomized to receive electrical, transcutaneous, or sham vagus nerve stimulation and were followed for survival or euthanized at predetermined time points for cytokine analysis. Measurements and Main Results: Transcutaneous vagus nerve stimulation dose‐dependently reduced systemic tumor necrosis factor levels during lethal endotoxemia. Treatment with transcutaneous vagus nerve stimulation inhibited HMGB1 levels and improved survival in mice with polymicrobial sepsis, even when administered 24 hrs after the onset of disease. Conclusions: Transcutaneous vagus nerve stimulation is an efficacious treatment for mice with lethal endotoxemia or polymicrobial sepsis.


Molecular Medicine | 2008

Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling.

William R. Parrish; Mauricio Rosas-Ballina; Margot Gallowitsch-Puerta; Mahendar Ochani; Kanta Ochani; Lihong Yang; LaQueta Hudson; Xinchun Lin; Nirav B Patel; Sarah M. Johnson; Sangeeta Chavan; Richard S. Goldstein; Christopher J. Czura; Edmund J. Miller; Yousef Al-Abed; Kevin J. Tracey; Valentin A. Pavlov

The α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR) is an essential component in the vagus nerve-based cholinergic anti-inflammatory pathway that regulates the levels of TNF, high mobility group box 1 (HMGB1), and other cytokines during inflammation. Choline is an essential nutrient, a cell membrane constituent, a precursor in the biosynthesis of acetylcholine, and a selective natural α7nAChR agonist. Here, we studied the anti-inflammatory potential of choline in murine endotoxemia and sepsis, and the role of the α7nAChR in mediating the suppressive effect of choline on TNF release. Choline (0.1–50 mM) dose-dependently suppressed TNF release from endotoxin-activated RAW macrophage-like cells, and this effect was associated with significant inhibition of NF-κB activation. Choline (50 mg/kg, intraperitoneally (i.p.)) treatment prior to endotoxin administration in mice significantly reduced systemic TNF levels. In contrast to its TNF suppressive effect in wild type mice, choline (50 mg/kg, i.p.) failed to inhibit systemic TNF levels in α7nAChR knockout mice during endotoxemia. Choline also failed to suppress TNF release from endotoxin-activated peritoneal macrophages isolated from α7nAChR knockout mice. Choline treatment prior to endotoxin resulted in a significantly improved survival rate as compared with saline-treated endotoxemic controls. Choline also suppressed HMGB1 release in vitro and in vivo, and choline treatment initiated 24 h after cecal ligation and puncture (CLP)-induced polymicrobial sepsis significantly improved survival in mice. In addition, choline suppressed TNF release from endotoxin-activated human whole blood and macrophages. Collectively, these data characterize the anti-inflammatory efficacy of choline and demonstrate that the modulation of TNF release by choline requires α7nAChR-mediated signaling.


Molecular Medicine | 2009

The selective alpha7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE.

Mauricio Rosas-Ballina; Richard S. Goldstein; Margot Gallowitsch-Puerta; Lihong Yang; Sergio Valdes-Ferrer; Nirav B Patel; Sangeeta Chavan; Yousef Al-Abed; Huan Yang; Kevin J. Tracey

The cholinergic antiinflammatory pathway modulates Inflammatory cytokine production through a mechanism dependent on the vagus nerve and the α7 subunit of the nicotinic acetylcholine receptor. GTS-21 [3-(2,4-dimethoxybenzylidene) anabaseine], a selective α7 agonist, inhibits inflammatory cytokine production in murine and human macrophages and in several models of inflammatory disease in vivo, but to date its antiinflammatory efficacy in human monocytes has not been characterized. We report here our findings that GTS-21 attenuates tumor necrosis factor (TNF) and interleukin 1β levels in human whole blood activated by exposure to endotoxin. GTS-21 inhibited TNF production in endotoxin-stimulated primary human monocytes in vitro at the transcriptional level. The suppressive effect of GTS-21 was more potent than nicotine in whole blood and monocytes. Furthermore, GTS-21 attenuated TNF production in monocytes stimulated with peptidoglycan, polyinosinic-polycytidylic acid, CpG, HMGB1 (high-mobility group box 1 protein), and advanced glycation end product-modified albumin. GTS-21 decreased TNF levels in endotoxin-stimulated whole blood obtained from patients with severe sepsis. These findings establish the immunoregulatory effect of GTS-21 on human monocytes, and indicate the potential benefits of further exploration of GTS-21’s therapeutic uses in human inflammatory disease.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis

Frieda A. Koopman; Sangeeta Chavan; Sanda Miljko; Simeon Grazio; Sekib Sokolovic; P. Richard Schuurman; Ashesh D. Mehta; Yaakov A. Levine; Michael A. Faltys; Ralph Zitnik; Kevin J. Tracey; Paul P. Tak

Significance Rheumatoid arthritis (RA) is a chronic, prevalent, and disabling autoimmune disease that occurs when inflammation damages joints. Recent advances in neuroscience and immunology have mapped neural circuits that regulate the onset and resolution of inflammation. In one circuit, termed “the inflammatory reflex,” action potentials transmitted in the vagus nerve inhibit the production of tumor necrosis factor (TNF), an inflammatory molecule that is a major therapeutic target in RA. Although studied in animal models of arthritis and other inflammatory diseases, whether electrical stimulation of the vagus nerve can inhibit TNF production in humans has remained unknown. The positive mechanistic results reported here extend the preclinical data to the clinic and reveal that vagus nerve stimulation inhibits TNF and attenuates disease severity in RA patients. Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the “inflammatory reflex,” is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2014

JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation

Ben Lu; Daniel J. Antoine; Kevin Kwan; Peter Lundbäck; H Wähämaa; Hanna Schierbeck; Melissa Robinson; Marieke A. D. van Zoelen; Huan Yang; Jianhua Li; Helena Erlandsson-Harris; Sangeeta Chavan; Haichao Wang; Ulf Andersson; Kevin J. Tracey

Significance High-mobility group box (HMGB)1 is a nuclear protein that we have identified as a proinflammatory mediator during infection or sterile tissue injury, which importantly orchestrates the innate immune responses. The mechanisms of HMGB1 release require translocation of HMGB1 from nucleus to cytoplasm and release into the extracellular space. We recently reported that the inflammasome and PKR mediates HMGB1 release from the cytoplasm, but the mechanism of HMGB1 translocation from nucleus to cytoplasm was previously unknown. Here, we describe our discovery that JAK/STAT1 is required for LPS- or interferon-induced HMGB1 nuclear translocation. These findings have significant implications for the field, and for designing therapeutics for potential use in inflammatory diseases. Extracellular high-mobility group box (HMGB)1 mediates inflammation during sterile and infectious injury and contributes importantly to disease pathogenesis. The first critical step in the release of HMGB1 from activated immune cells is mobilization from the nucleus to the cytoplasm, a process dependent upon hyperacetylation within two HMGB1 nuclear localization sequence (NLS) sites. The inflammasomes mediate the release of cytoplasmic HMGB1 in activated immune cells, but the mechanism of HMGB1 translocation from nucleus to cytoplasm was previously unknown. Here, we show that pharmacological inhibition of JAK/STAT1 inhibits LPS-induced HMGB1 nuclear translocation. Conversely, activation of JAK/STAT1 by type 1 interferon (IFN) stimulation induces HMGB1 translocation from nucleus to cytoplasm. Mass spectrometric analysis unequivocally revealed that pharmacological inhibition of the JAK/STAT1 pathway or genetic deletion of STAT1 abrogated LPS- or type 1 IFN-induced HMGB1 acetylation within the NLS sites. Together, these results identify a critical role of the JAK/STAT1 pathway in mediating HMGB1 cytoplasmic accumulation for subsequent release, suggesting that the JAK/STAT1 pathway is a potential drug target for inhibiting HMGB1 release.


Journal of Experimental Medicine | 2015

MD-2 is required for disulfide HMGB1–dependent TLR4 signaling

Huan Yang; Haichao Wang; Zhongliang Ju; Ahmed A. Ragab; Peter Lundbäck; Wei Long; Sergio Valdes-Ferrer; Mingzhu He; John P. Pribis; Jianhua Li; Ben Lu; Domokos Gero; Csaba Szabó; Daniel J. Antoine; Helena Erlandsson Harris; Doug T. Golenbock; Jianmin Meng; Jesse Roth; Sangeeta Chavan; Ulf Andersson; Timothy R. Billiar; Kevin J. Tracey; Yousef Al-Abed

Yang et al. show that a disulfide isoform of HMGB1, with a role in TLR4 signaling, physically interacts with and binds MD-2. MD-2 deficiency in macrophage cell lines or in primary mouse macrophages stimulated with HMGB1 implicates MD-2 in TLR4 signaling. They also identify an HGMB1 peptide inhibitor, P5779, which when administered in vivo can protect mice from acetaminophen-induced hepatoxicity, ischemia/reperfusion injury, and sepsis.

Collaboration


Dive into the Sangeeta Chavan's collaboration.

Top Co-Authors

Avatar

Kevin J. Tracey

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Huan Yang

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Peder S. Olofsson

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jianhua Li

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Valentin A. Pavlov

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mahendar Ochani

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ulf Andersson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Mauricio Rosas-Ballina

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sergio Valdes-Ferrer

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ben Lu

North Shore-LIJ Health System

View shared research outputs
Researchain Logo
Decentralizing Knowledge