Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sangsik Jeong is active.

Publication


Featured researches published by Sangsik Jeong.


Journal of Physical Chemistry A | 2010

Melting Behavior and Ionic Conductivity in Hydrophobic Ionic Liquids

Miriam Kunze; Maria Montanino; Giovanni Battista Appetecchi; Sangsik Jeong; Monika Schönhoff; Martin Winter; Stefano Passerini

Four room-temperature ionic liquids (RTILs) based on the N-butyl-N-methyl pyrrolidinium (Pyr(14)(+)) and N-methyl-N-propyl pyrrolidinium cations (Pyr(13)(+)) and bis(trifluoromethanesulfonyl)imide (TFSI(-)) and bis(fluorosulfonyl)imide (FSI(-)) anions were intensively investigated during their melting. The diffusion coefficients of (1)H and (19)F were determined using pulsed field gradient (PFG) NMR to study the dynamics of the cations, anions, and ion pairs. The AC conductivities were measured to detect only the motion of the charged particles. The melting points of these ionic liquids were measured by DSC and verified by the temperature-dependent full width at half-maximum (FWHM) of the (1)H and (19)F NMR peaks. The diffusion and conductivity data at low temperatures gave information about the dynamics at the melting point and allowed specifying the way of melting. In addition, the diffusion coefficients of (1)H (D(H)) and (19)F (D(F)) and conductivity were correlated using the Nernst-Einstein equation with respect to the existence of ion pairs. Our results show that in dependence on the cation different melting behaviors were identified. In the Pyr(14)-based ILs, ion pairs exist, which collapse above the melting point of the sample. This is in contrast to the Pyr(13)-based ILs where the present ion pairs in the crystal dissociate during the melting. Furthermore, the anions do not influence the melting behavior of the investigated Pyr(14) systems but affect the Pyr(13) ILs. This becomes apparent in species with a higher mobility during the breakup of the crystalline IL.


Chemsuschem | 2016

Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions

Gebrekidan Gebresilassie Eshetu; Sylvie Grugeon; Huikyong Kim; Sangsik Jeong; Liming Wu; Grégory Gachot; Stéphane Laruelle; Michael Armand; Stefano Passerini

We report a systematic investigation of Na-based electrolytes that comprise various NaX [X=hexafluorophosphate (PF6 ), perchlorate (ClO4 ), bis(trifluoromethanesulfonyl)imide (TFSI), fluorosulfonyl-(trifluoromethanesulfonyl)imide (FTFSI), and bis(fluorosulfonyl)imide (FSI)] salts and solvent mixtures [ethylene carbonate (EC)/dimethyl carbonate (DMC), EC/diethyl carbonate (DEC), and EC/propylene carbonate (PC)] with respect to the Al current collector stability, formation of soluble degradation compounds, reactivity towards sodiated hard carbon (Nax -HC), and solid-electrolyte interphase (SEI) layer formation. Cyclic voltammetry demonstrates that the stability of Al is highly influenced by the nature of the anions, solvents, and additives. GC-MS analysis reveals that the formation of SEI telltales depends on the nature of the linear alkyl carbonates and the battery chemistry (Li(+) vs. Na(+) ). FTIR spectroscopy shows that double alkyl carbonates are the main components of the SEI layer on Nax -HC. In the presence of Na salts, EC/DMC and EC/DEC presented a higher reactivity towards Nax -HC than EC/PC. For a fixed solvent mixture, the onset temperature follows the sequence NaClO4


Energy and Environmental Science | 2016

Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes

Giuseppe Antonio Elia; Ulderico Ulissi; Sangsik Jeong; Stefano Passerini; Jusef Hassoun

Advanced ionic liquid-based electrolytes are herein characterized for application in high performance lithium-ion batteries. The electrolytes based on either N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), N-butyl-N-methylpyrrolidinium bis(fluoro-sulfonyl)imide (Pyr14FSI), N-methoxy-ethyl-N-methylpyrrolidinium bis(trifluoromethane-sulfonyl)imide (Pyr12O1TFSI) or N-N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEMETFSI) ionic liquids and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt are fully characterized in terms of ionic conductivity, viscosity, electrochemical properties and lithium-interphase stability. All IL-based electrolytes reveal suitable characteristics for application in batteries. Lithium half-cells, employing a LiFePO4 polyanionic cathode, show remarkable performance. In particular, relevant efficiency and rate-capability are observed for the Py14FSI–LiTFSI electrolyte, which is further characterized for application in a lithium-ion battery composed of the alloying Sn–C nanocomposite anode and LiFePO4 cathode. The IL-based full-cell delivers a maximum reversible capacity of about 160 mA h g−1 (versus cathode weight) at a working voltage of about 3 V, corresponding to an estimated practical energy of about 160 W h kg−1. The cell evidences outstanding electrochemical cycle life, i.e., extended over 2000 cycles without signs of decay, and satisfactory rate capability. This performance together with the high safety provided by the IL-electrolyte, olivine-structure cathode and Li-alloying anode, makes this cell chemistry well suited for application in new-generation electric and electronic devices.


RSC Advances | 2015

Ternary polymer electrolytes incorporating pyrrolidinium-imide ionic liquids

Henrik de Vries; Sangsik Jeong; Stefano Passerini

Herein is reported the performance of ternary polymer electrolytes incorporating ionic liquids, showing higher ionic conductivity over a wide temperature range than binary polymer–salt systems, while guaranteeing higher safety compared to liquid, organic electrolytes or gel electrolytes. In particular, the electrochemical performance and the interactions between poly(ethylene oxide) (PEO), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and several pyrrolidinium-based ionic liquids is comparatively investigated. Eight different polymer electrolytes were produced to test the ionic conductivity and long-time (more than 1400 hours) cycling stability in symmetrical lithium cells. Thermal analysis was used to investigate the thermal stability and degree of crystallinity. Six of the eight investigated samples are found fully amorphous at room temperature. In general, the properties of the polymer electrolytes are influenced by both Ionic liquid ions. The ether function in the side chain of the pyrrolidinium increases the ionic conductivity but, in some cases, lowers the thermal and electrochemical stability.


Chemsuschem | 2016

Eco‐friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte

Jae‐Kwang Kim; Franziska Mueller; Hyojin Kim; Sangsik Jeong; Jeong-Sun Park; Stefano Passerini; Youngsik Kim

As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, novel concepts are urgently needed concerning batteries that have high energy densities, low costs, and high levels of safety. Here, a novel eco-friendly energy storage system (ESS) using seawater and an ionic liquid is proposed for the first time; this represents an intermediate system between a battery and a fuel cell, and is accordingly referred to as a hybrid rechargeable cell. Compared to conventional organic electrolytes, the ionic liquid electrolyte significantly enhances the cycle performance of the seawater hybrid rechargeable system, acting as a very stable interface layer between the Sn-C (Na storage) anode and the NASICON (Na3 Zr2 Si2 PO12) ceramic solid electrolyte, making this system extremely promising for cost-efficient and environmentally friendly large-scale energy storage.


Chemsuschem | 2017

Comprehensive Insights into the Thermal Stability, Biodegradability, and Combustion Chemistry of Pyrrolidinium-Based Ionic Liquids

Gebrekidan Gebresilassie Eshetu; Sangsik Jeong; Pascal Pandard; Amandine Lecocq; Guy Marlair; Stefano Passerini

The use of ionic liquids (ILs) as advanced electrolyte components in electrochemical energy-storage devices is one of the most appealing and emerging options. However, although ILs are hailed as safer and eco-friendly electrolytes, to overcome the limitations imposed by the highly volatile/combustible carbonate-based electrolytes, full-scale and precise appraisal of their overall safety levels under abuse conditions still needs to be fully addressed. With the aim of providing this level of information on the thermal and chemical stabilities, as well as actual fire hazards, herein, a detailed investigation of the short- and long-term thermal stabilities, biodegradability, and combustion behavior of various pyrrolidinium-based ILs, with different alkyl chain lengths, counteranions, and cations, as well as the effect of doping with lithium salts, is described.


Chemsuschem | 2018

Connection between Lithium Coordination and Lithium Diffusion in [Pyr

Guinevere A. Giffin; Arianna Moretti; Sangsik Jeong; Kartik Pilar; Marc Brinkkötter; Steven Greenbaum; Monika Schönhoff; Stefano Passerini

The use of highly concentrated ionic liquid-based electrolytes results in improved rate capability and capacity retention at 20 °C compared to Li+ -dilute systems in Li-metal and Li-ion cells. This work explores the connection between the bulk electrolyte properties and the molecular organization to provide insight into the concentration dependence of the Li+ transport mechanisms. Below 30 mol %, the Li+ -containing species are primarily smaller complexes (one Li+ cation) and the Li+ ion transport is mostly derived from the vehicular transport. Above 30 mol %, where the viscosity is substantially higher and the conductivity lower, the Li+ -containing species are a mix of small and large complexes (one and more than one Li+ cation, respectively). The overall conduction mechanism likely changes to favor structural diffusion through the exchange of anions in the first Li+ solvation shell. The good rate performance is likely directly influenced by the presence of larger Li+ complexes, which promote Li+ -ion transport (as opposed to Li+ -complex transport) and increase the Li+ availability at the electrode.


Metals and Materials International | 2004

_{1201}

Joon-Ho Shin; B. S. Jung; Sangsik Jeong; Ki Won Kim; Hyo-Jun Ahn; Kwon-Koo Cho; Junho Ahn

Electrochemical and interfacial properties of (PEO)10LiCF3SO3−Al2O3 composite polymer electrolytes (CPEs) prepared by either ball milling or stirring are reported. Ball milling was introduced into a slurry preparative technique utilizing PEO, lithium salt and Al2O3 powder ranging from 5 to 15 wt.%. The ionic conductivity was increased by ball milling over a range of temperatures. In particular, a significant increase at low temperature below the melting point of crystalline PEO was observed. Interfacial stability between lithium electrode and CPE was significantly improved by the addition of alumina as well as by ball milling. The electrochemical stability window produced by (PEO)10LiCF3SO3−Al2O3 ball milling was higher than that of stirring, which was about 4.4 V. Charge/discharge performance of Li/CPE/S cells with (PEO)10LiCF3SO3−Al2O3-12 hr ball milling was superior to that of a pristine polymer electrolyte due to the low interface resistance and high ionic conductivity.


Sustainable Energy and Fuels | 2018

][FTFSI] Ionic Liquid Electrolytes [in press]

Alberto Scalia; Alberto Varzi; Andrea Lamberti; Elena Maria Tresso; Sangsik Jeong; Timo Jacob; Stefano Passerini

A novel, monolithic harvesting–storage (HS) device composed of a dye-sensitized solar cell (DSSC)-based module and a high voltage supercapacitor with impressive discharge capacity after photocharging is herein proposed. Both the harvesting and the storage sections are fabricated onto conductive glass substrates, paving the way to a smart and easy integration in window facades for energy self-sustainable buildings. In addition, the HS device can also be integrated in portable electronics or drive remote, off-grid sensor networks requiring high power intermittent electrical energy. The harvesting photovoltaic section is constituted by a series of four DSSCs integrated in a single W-type module while the storage section consists of an activated carbon-based supercapacitor (SC) utilizing Pyr14TFSI ionic liquid as the electrolyte. The testing of the two separated sections as well as of the integrated system is reported here. In particular, the integration is evaluated through photo-charge and subsequent discharge protocols performed at different galvanostatic currents, showing that the SC handles photo-charges up to 2.45 V while delivering discharge capacities exceeding 1.8 mA h (0.1 mA h cm−2) upon 1 mA discharge current. To the best of our knowledge this is a never reported before, absolute record value, for stable and reliable integrated HS devices.


Journal of Chemical Physics | 2018

Electrochemical and interfacial properties of (PEO)10LiCF3SO3−Al2O3 nanocomposite polymer electrolytes using ball milling

Kartik Pilar; Victor Balédent; Mehdi Zeghal; Patrick Judeinstein; Sangsik Jeong; Stefano Passerini; Steve Greenbaum

X-ray scattering measurements were utilized to probe the effects of pressure on a series of ionic liquids, N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr1A-TFSI) (A = 3, 6, and 9), along with mixtures of ionic liquid and 30 mol. % lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. No evidence was found for crystallization of the pure ionic liquids or salt mixtures even at pressures up to 9.2 GPa. No phase separation or demixing was observed for the ionic liquid and salt mixtures. Shifts in the peak positions are indicative of compression of the ionic liquids and mixtures up to 2 GPa, after which samples reach a region of relative incompressibility, possibly indicative of a transition to a glassy state. With the application of pressure, the intensity of the prepeak was found to decrease significantly, indicating a reduction in cation alkyl chain aggregation. Additionally, incompressibility of the scattering peak associated with the distance between like-charges in the pure ionic liquids compared to that in mixtures with lithium salt suggests that the application of pressure could inhibit Li+ coordination with TFSI- to form Li[TFSI2]- complexes. This inhibition occurs through the suppression of TFSI- in the trans conformer, in favor of the smaller cis conformer, at high pressures.

Collaboration


Dive into the Sangsik Jeong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arianna Moretti

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Guinevere A. Giffin

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Guk-Tae Kim

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ki-Won Kim

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge