Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sangsu Shin is active.

Publication


Featured researches published by Sangsu Shin.


Diabetes | 2013

Autocrine Function of Aldehyde Dehydrogenase 1 as a Determinant of Diet- and Sex-Specific Differences in Visceral Adiposity

Rumana Yasmeen; Barbara Reichert; Jeffrey A. Deiuliis; Fangping Yang; Alisha Lynch; Joseph Meyers; Molly Sharlach; Sangsu Shin; Katharina S. Volz; Kari B. Green; Kichoon Lee; Hansjuerg Alder; Gregg Duester; Rudolf Zechner; Sanjay Rajagopalan; Ouliana Ziouzenkova

Mechanisms for sex- and depot-specific fat formation are unclear. We investigated the role of retinoic acid (RA) production by aldehyde dehydrogenase 1 (Aldh1a1, -a2, and -a3), the major RA-producing enzymes, on sex-specific fat depot formation. Female Aldh1a1−/− mice, but not males, were resistant to high-fat (HF) diet–induced visceral adipose formation, whereas subcutaneous fat was reduced similarly in both groups. Sexual dimorphism in visceral fat (VF) was attributable to elevated adipose triglyceride lipase (Atgl) protein expression localized in clusters of multilocular uncoupling protein 1 (Ucp1)-positive cells in female Aldh1a1−/− mice compared with males. Estrogen decreased Aldh1a3 expression, limiting conversion of retinaldehyde (Rald) to RA. Rald effectively induced Atgl levels via nongenomic mechanisms, demonstrating indirect regulation by estrogen. Experiments in transgenic mice expressing an RA receptor response element (RARE-lacZ) revealed HF diet–induced RARE activation in VF of females but not males. In humans, stromal cells isolated from VF of obese subjects also expressed higher levels of Aldh1 enzymes compared with lean subjects. Our data suggest that an HF diet mediates VF formation through a sex-specific autocrine Aldh1 switch, in which Rald-mediated lipolysis in Ucp1-positive visceral adipocytes is replaced by RA-mediated lipid accumulation. Our data suggest that Aldh1 is a potential target for sex-specific antiobesity therapy.


Poultry Science | 2010

Cloning of avian Delta-like 1 homolog gene: The biallelic expression of Delta-like 1 homolog in avian species

Sangsu Shin; Jungwon Han; Kichoon Lee

Delta-like 1 homolog (Dlk1) is a paternally expressed imprinted gene in mammals, regulating development and differentiation of adipose and muscle. The Dlk1 genes of the quail and turkey were cloned and analyzed in their properties of amino acid sequences, alternative splicing, and genetic distances from other species. In addition, because Dlk1 is located in the cluster of up to 10 imprinted genes in mammals, the genomic structure of the cluster was investigated in the chicken. Furthermore, the imprinting status of the avian Dlk1 gene was also determined here. The numbers of coding sequences of the quail and turkey Dlk1 were the same as chicken Dlk1 in nucleotide (1,161 bp) and amino acid (386 amino acids) sequences. The amino acid similarities were more than 96% with predicted conserved domains including the signal sequence, 6 epidermal growth factor-like domains, and a transmembrane domain. As in the chicken, the alternative splicing of Dlk1 transcripts was not observed in the turkey and quail. Phylogenetic analysis revealed that the chicken and turkey Dlk1 were closer than the chicken and quail. Comparative analysis of the gene clusters containing the Dlk1 gene revealed that Yy1, Wars, Wdr25, Begain, Dlk1, Dio3, and Ppp2r5c were found in the cluster of the chicken genome, but 3 genes (Meg3, Rtl1, and Meg8) between Dlk1 and deiodinase, iodothyronine, type III (Dio3) were not found. Several SNP in the genomic DNA sequences of the fifth exon were identified in chickens and quail. Sequencing analysis of reverse transcription-PCR products of Dlk1 revealed that adipose and muscle from chickens and quail heterozygous for these SNP produce Dlk1 transcripts from both alleles, demonstrating biallelic expression of Dlk1 in the avian species. These results clearly demonstrate that avian Dlk1 is not imprinted and its expression might be regulated in a different manner from mammals.


Poultry Science | 2014

Developmental regulation of adipose tissue growth through hyperplasia and hypertrophy in the embryonic Leghorn and broiler

Paula Chen; Yeunsu Suh; Young Min Choi; Sangsu Shin; Kichoon Lee

The United States is a world leader in poultry production, which is the reason why achieving better performance and muscle growth each year is a necessity. Reducing accretion of adipose tissue is another important factor for poultry producers because this allows more nutrients to be directed toward muscle growth, but the effect of embryonic adipose growth on posthatch development has not been fully understood. The purpose of this study was to investigate the total DNA mass, morphological characteristics, differentiation markers, and triglyceride breakdown factors of embryonic adipose tissue, and their relation to hyperplastic and hypertrophic growth within layers (Leghorn) and meat-type chickens (broilers). After embryonic day (E) 12, broiler weight was significantly higher than Leghorn, and this trend continued throughout the rest of incubation and posthatch (P < 0.05). Neck and leg fat pad weights between the 2 breeds did not differ at most of the time points. A remarkable increase in total DNA mass was observed between E12 and E14 in both Leghorn and broilers (P < 0.05), indicating a high potential for hyperplastic growth during this time. Histological analysis revealed clusters of preadipocytes at E12; however, the majority of these cells differentiated by E14 and continued to grow until the time of hatch. The adipocyte sizes between both breeds did not generally differ, even though broilers are known to have larger adipocytes posthatch. Fatty acid-binding protein 4 expression levels in Leghorn and broilers continued to rise with each time point, which paralleled the expansion of mature adipocytes. Adipose triglyceride lipase was highly expressed at E20 and d 1 posthatch to mobilize triglyceride degradation for energy during hatching. Thus, embryonic chicken adipose tissue was found to develop by hyperplastic mechanisms followed by hypertrophy. At embryonic stages and early posthatch, layer- and meat-type chicken adipose growth does not differ, which suggests breed differences occur posthatch.


FEBS Letters | 2014

Membrane-bound delta-like 1 homolog (Dlk1) promotes while soluble Dlk1 inhibits myogenesis in C2C12 cells

Sangsu Shin; Yeunsu Suh; H. N. Zerby; Kichoon Lee

Delta‐like 1 homolog (Dlk1) is important in myogenesis. However, the roles of different Dlk1 isoforms have not been investigated. In C2C12 cell lines producing different Dlk1 isoforms, membrane‐bound Dlk1 promoted the hypertrophic phenotype and a higher fusion rate, whereas soluble Dlk1 inhibited myotube formation. Inversed expression patterns of genes related to myogenic differentiation further support these phenotypic changes. In addition, temporal expression and balance between the Dlk1 isoforms have a regulatory role in myogenesis in vivo. Collectively, Dlk1 isoforms have distinctive effects on myogenesis, and its regulation during myogenesis is critical for normal muscle development.


PLOS ONE | 2014

Inhibition of Lipolysis in the Novel Transgenic Quail Model Overexpressing G0/G1 Switch Gene 2 in the Adipose Tissue during Feed Restriction

Sangsu Shin; Young Min Choi; Jae Yong Han; Kichoon Lee

In addition to the issue of obesity in humans, the production of low-fat meat from domestic animals is important in the agricultural industry to satisfy consumer demand. Understanding the regulation of lipolysis in adipose tissue could advance our knowledge to potentially solve both issues. Although the G0/G1 switch gene 2 (G0S2) was recently identified as an inhibitor of adipose triglyceride lipase (ATGL) in vitro, its role in vivo has not been fully clarified. This study was conducted to investigate the role of G0S2 gene in vivo by using two independent transgenic quail lines during different energy conditions. Unexpectedly, G0S2 overexpression had a negligible effect on plasma NEFA concentration, fat cell size and fat pad weight under ad libitum feeding condition when adipose lipolytic activity is minimal. A two-week feed restriction in non-transgenic quail expectedly caused increased plasma NEFA concentration and dramatically reduced fat cell size and fat pad weight. Contrary, G0S2 overexpression under a feed restriction resulted in a significantly less elevation of plasma NEFA concentration and smaller reductions in fat pad weights and fat cell size compared to non-transgenic quail, demonstrating inhibition of lipolysis and resistance to loss of fat by G0S2. Excessive G0S2 inhibits lipolysis in vivo during active lipolytic conditions, such as food restriction and fasting, suggesting G0S2 as a potential target for treatment of obesity. In addition, transgenic quail are novel models for studying lipid metabolism and mechanisms of obesity.


PLOS ONE | 2015

Identification of the Avian RBP7 Gene as a New Adipose-Specific Gene and RBP7 Promoter-Driven GFP Expression in Adipose Tissue of Transgenic Quail

Jinsoo Ahn; Sangsu Shin; Yeunsu Suh; Ju Yeon Park; Seongsoo Hwang; Kichoon Lee

The discovery of an increasing number of new adipose-specific genes has significantly contributed to our understanding of adipose tissue biology and the etiology of obesity and its related diseases. In the present study, comparison of gene expression profiles among various tissues was performed by analysis of chicken microarray data, leading to identification of RBP7 as a novel adipose-specific gene in chicken. Adipose-specific expression of RBP7 in the avian species was further confirmed at the protein and mRNA levels. Examination of the transcription factor binding sites within the chicken RBP7 promoter by Matinspector software revealed potential binding sites for adipogenic transcription factors. This led to the hypothesis that the RBP7 promoter can be utilized to overexpress a transgene in adipose tissue in order to further investigate the function of a transgene in adipose tissue. Several lines of transgenic quail containing a green fluorescent protein (GFP) gene under the control of the RBP7 promoter were generated using lentivirus-mediated gene transfer. The GFP expression in transgenic quail was specific to adipose tissue and increased after adipocyte differentiation. This expression pattern was consistent with endogenous RBP7 expression, suggesting the RBP7 promoter is sufficient to overexpress a gene of interest in adipose tissue at later developmental stages. These findings will lead to the establishment of a novel RBP7 promoter cassette which can be utilized for overexpressing genes of interest in adipose tissue in vivo to study the function of genes in adipose tissue development and lipid metabolism.


American Journal of Physiology-cell Physiology | 2015

A novel mechanism of myostatin regulation by its alternative splicing variant during myogenesis in avian species.

Sangsu Shin; Yan Song; Jinsoo Ahn; Eunsoo Kim; Paula Chen; Shujin Yang; Yeunsu Suh; Kichoon Lee

Myostatin (MSTN) is a key negative regulator of muscle growth and development, and an increase of muscle mass is achieved by inhibiting MSTN signaling. In the current study, five alternative splicing isoforms of MSTN mRNAs in avian species were identified in various tissues. Among these five, three truncated forms of myostatin, MSTN-B, -C, and -E created premature stop codons and produced partial MSTN prodomains encoded from exon 1. MSTN-B is the second dominant isoform following full-length MSTN-A, and their expression was dynamically regulated during muscle development of chicken, turkey, and quail in vivo and in vitro. To clarify the function of MSTN-B, two stable cell lines of quail myoblasts (QM7) were generated to overexpress MSTN-A or MSTN-B. Interestingly, MSTN-B promoted both cell proliferation and differentiation similar to the function of the MSTN prodomain to counteract the negative role of MSTN on myogenesis. The coimmunoprecipitation assay revealed that MSTN-B binds to MSTN-A and reduces the generation of mature MSTN. Furthermore, the current study demonstrated that the partial prodomain encoded from exon 1 is critical for binding of MSTN-B to MSTN-A. Altogether, these data imply that alternative splicing isoforms of MSTN could negatively regulate pro-myostatin processing in muscle cells and prevent MSTN-mediated inhibition of myogenesis in avian species.


PLOS ONE | 2014

Skeletal Muscle Characterization of Japanese Quail Line Selectively Bred for Lower Body Weight as an Avian Model of Delayed Muscle Growth with Hypoplasia

Young Min Choi; Yeunsu Suh; Sangsu Shin; Kichoon Lee

This study was designed to extensively characterize the skeletal muscle development in the low weight (LW) quail selected from random bred control (RBC) Japanese quail in order to provide a new avian model of impaired and delayed growth in physically normal animals. The LW line had smaller embryo and body weights than the RBC line in all age groups (P<0.05). During 3 to 42 d post-hatch, the LW line exhibited approximately 60% smaller weight of pectoralis major muscle (PM), mainly resulting from lower fiber numbers compared to the RBC line (P<0.05). During early post-hatch period when myotubes are still actively forming, the LW line showed impaired PM growth with prolonged expression of Pax7 and lower expression levels of MyoD, Myf-5, and myogenin (P<0.05), likely leading to impairment of myogenic differentiation and consequently, reduced muscle fiber formation. Additionally, the LW line had delayed transition of neonatal to adult myosin heavy chain isoform, suggesting delayed muscle maturation. This is further supported by the finding that the LW line continued to grow unlike the RBC line; difference in the percentages of PMW to body weights between both quail lines diminished with increasing age from 42 to 75 d post-hatch. This delayed muscle growth in the LW line is accompanied by higher levels of myogenin expression at 42 d (P<0.05), higher percentage of centered nuclei at 42 d (P<0.01), and greater rate of increase in fiber size between 42 and 75 d post-hatch (P<0.001) compared to the RBC line. Analysis of physiological, morphological, and developmental parameters during muscle development of the LW quail line provided a well-characterized avian model for future identification of the responsible genes and for studying mechanisms of hypoplasia and delayed muscle growth.


Animal | 2013

Muscle fiber characteristics of pectoralis major muscle as related to muscle mass in different Japanese quail lines.

Young Min Choi; Sangsu Shin; Macdonald Wick; J. H. Choe; Kichoon Lee

The objectives of this study were to investigate the muscle fiber characteristics of the pectoralis major muscle, and its relation to growth performance in the random bred control (RBC) and heavy weight (HW) Japanese quail lines at 42 days of age. The HW line had greater body (232.0 v. 100.2 g, P < 0.001) and pectoralis major muscle (19.0 v. 6.2 g, P < 0.001) weights than the RBC line. Color differences were observed between the superficial and deep regions of the pectoralis major muscle, with the superficial region showing a higher value of lightness than the deep region of the RBC or HW lines (P < 0.001). The percentage of the superficial region in the pectoralis major muscle was higher in the HW line compared with the RBC line (46.2% v. 38.0%, P = 0.017). There were no significant differences in the total fiber number in the superficial and deep regions between the two quail lines (P = 0.718). The HW quail line showed a larger mean fiber cross-sectional area (CSA; 375.5 v. 176.6 μm², P < 0.001) and type IIA fiber CSA (243.7 v. 131.9 μm², P < 0.001) than the RBC quail line. The HW line also had greater CSA percentage (60.2% v. 34.2%, P < 0.001) and number percentage (41.6% v. 14.2%, P < 0.001) of type IIB fibers, although there were no significant differences in type IIB fiber CSA between the RBC and HW lines (P = 0.219). Therefore, greater body and muscle weights of the HW line are caused by differences in muscle fiber characteristics, especially the proportion of type IIB fiber and the CSA of type IIA fiber, compared with the RBC line. The results of this study suggest that muscle fiber hypertrophy has more impact on body and muscle weights of the different quail lines than muscle fiber hyperplasia.


Poultry Science | 2013

Comparative growth performance in different Japanese quail lines: The effect of muscle DNA content and fiber morphology

Young Min Choi; D. Sarah; Sangsu Shin; Macdonald Wick; B.C. Kim; Kyeong-Jun Lee

The aim of this study was to investigate the DNA content and morphological characteristics of muscle fibers, and their relation to the growth performance in random bred control (RBC) and heavy weight (HW) Japanese quail lines. The 2 lines were of similar embryo size at 6 and 8 d of incubation; however, HW quail were significantly larger than their counterparts after 10 d of incubation (P < 0.05). The hatch weight of the HW quail line was approximately 1.3-fold higher than the RBC quail line (P < 0.001). After 15 d posthatch, the BW and pectoralis major muscle weight (PMW) exhibited remarkable differences between the 2 quail lines. The RBC line showed a faster rate of increase in PMW (2.7- vs. 2.1-fold) and total DNA mass (2.2- vs. 1.6-fold) between 0 and 4 d posthatch. The HW line exhibited a greater rate of the PMW (33.0- vs. 12.9-fold) and total DNA mass (10.3- vs. 4.0-fold) between 4 and 15 d posthatch than the RBC line. Moreover, the greatest increase in total DNA mass occurred between 0 and 8 d posthatch for the RBC line and 4 to 15 d posthatch for the HW line. These differences in the DNA content indicate a difference in the hypertrophic potential of muscle fibers between the 2 quail lines. The cross-sectional area of muscle fibers was 1.3-fold greater in the HW line compared with the RBC line at 8 d posthatch (158.5 vs. 97.11 μm(2), P < 0.001), and this difference increased with age (over 2.1-fold greater in the HW line). Thus, the most important time windows affecting ultimate body and muscle weights in the RBC and HW quail lines are between 0 to 8 d and 4 to 15 d posthatch, respectively. Rapid muscle growth rate and a greater muscle mass in the HW quail line may be partially due to the hypertrophic potential of muscle fibers, which is characterized by larger fiber size.

Collaboration


Dive into the Sangsu Shin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae Yong Han

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Seongsoo Hwang

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge