Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yeunsu Suh is active.

Publication


Featured researches published by Yeunsu Suh.


Poultry Science | 2009

Cloning of adipose triglyceride lipase complementary deoxyribonucleic acid in poultry and expression of adipose triglyceride lipase during development of adipose in chickens

Kichoon Lee; Jonghyun Shin; J. D. Latshaw; Yeunsu Suh; J. Serr

Increasing the breakdown of stored fat in adipose tissue leads to reducing fat content, enhancing feed efficiency and, consequently, decreasing the production cost of poultry. The processes of lipolysis are not completely understood, and the proteins involved in this process need to be identified. An adipose triglyceride lipase (ATGL), recently identified in several species, has not been studied in avian species. We have cloned the full-length coding sequences of ATGL cDNA for the chicken, turkey, and quail. Sequence comparisons among mammals and these avian species showed that the avian ATGL have 2 conserved domains, the patatin domain and the hydrophobic domain. The patatin domain contains lipase activity, and the hydrophobic domain exhibits lipid droplet binding. The high levels of chicken, turkey, and quail ATGL mRNA and protein are exclusively found in subcutaneous and abdominal adipose tissues. In addition, chicken ATGL (gATGL) is mainly expressed in the fractionated adipocytes compared with stromal-vascular cells that mostly contain preadipocytes (P < 0.001). Furthermore, ontogeny of gATGL mRNA and protein expression in adipose tissue showed induction of gATGL immediately after hatching before access to food (P < 0.05), suggesting that an energy deficit due to posthatching starvation may increase breakdown of stored fat via increasing gATGL expression in adipose tissue. Our studies showed that expression of the chicken ATGL is adipose specific and regulated developmentally, suggesting that a possible modulation of ATGL expression would regulate fat deposition in avian species.


Journal of Animal Science | 2011

Cloning of avian G(0)/G(1) switch gene 2 genes and developmental and nutritional regulation of G(0)/G(1) switch gene 2 in chicken adipose tissue1

S.-A. Oh; Yeunsu Suh; Myung-Geol Pang; Kichoon Lee

Adipose triglyceride lipase (ATGL), a newly identified lipase, is a rate-limiting enzyme for triglyceride hydrolysis in adipocytes. The regulatory proteins involved in ATGL-mediated lipolysis in fat tissue are not fully identified and understood. The G(0)/G(1) switch gene 2 (G0S2) is an inhibitor of ATGL activity by interacting with ATGL through the hydrophobic domain of G0S2. Here, for the first time, we have cloned the coding sequence of G0S2 cDNA for the chicken, turkey, and quail. Sequence comparisons with mammals revealed that the avian G0S2 also have a conserved hydrophobic domain. Avian G0S2 is predominantly expressed in adipose tissues relative to other tested tissues. Within the adipose tissue, G0S2 is expressed 20-fold greater in the adipocyte than in the stromal-vascular (SV) fraction (P < 0.001). Expression of G0S2 mRNA gradually increased during differentiation of chicken adipocytes in culture (P < 0.05). However, there is G0S2 expression in embryonic adipose tissue, SV fraction, and primary preadipocytes before confluence that generally have an increased capacity of cell proliferation, which indicates it has an important role in adipocyte differentiation rather than proliferation. For a better understanding of how G0S2 responds to environmental stimuli, chickens were fasted for 24 h and then refed. Expression of G0S2 in adipose tissue was dramatically decreased (P < 0.05) in the chickens and quail after a 24-h fasting period, and increased to the control level after refeeding. In contrast to G0S2 expression, ATGL expression was induced (P < 0.05) after the 24-h fasting period and rapidly returned to the control level during the refeeding period. These data indicate that changes in lipolytic activities of adipose tissue in vivo can be regulated by G0S2 expression, as an inhibitor of ATGL.


Poultry Science | 2009

Regulation of adipose triglyceride lipase by fasting and refeeding in avian species.

J. Serr; Yeunsu Suh; Kichoon Lee

Lipolysis in fat tissue is a process that is not fully understood. Increasing knowledge of the process could allow for increased feed efficiency and reduced fat content, which would lower feeding costs for poultry production. Adipose triglyceride lipase (ATGL) is an adipose-specific enzyme that cleaves at the Sn-1 position of triglycerides, releasing nonesterified fatty acids (NEFA) into the bloodstream. Adipose triglyceride lipase has recently been cloned in avian species. For further understanding of how ATGL responds to environmental stimuli, we fasted 21-d-old Ross 308 broiler chickens for 24 h. Adipose and liver tissues were collected before the fasting period and at its conclusion, as well as 4, 8, 12, and 24 h after being refed. Blood samples were also collected at these time points. Additionally, tissue samples were collected from 30 quails subjected to the same fasting period, with refeeding time points of 2, 4, and 8 h. Adipose triglyceride lipase in tissue samples was analyzed via Western blot and quantitative real-time PCR. Protein and RNA levels of ATGL were high in the birds after the fasting period. Ribonucleic acid levels quickly returned to control levels following refeeding. Protein levels, however, remained high in the chicken throughout the 4- and 8-h refeeding time points. For the quail samples, ATGL protein returned to normal levels at 8 h. To relate the release of NEFA into the blood with ATGL expression, plasma analysis was done. Nonesterified fatty acids were significantly higher after the fasting period than the control and returned to control levels by 4 h after refeeding. The quick return of the RNA to control levels suggests that ATGL production was stimulated during the fasting period but inhibited once food was reintroduced. The immediately lowered NEFA levels suggest that the residual high amounts of ATGL protein shown by Western blot were no longer functioning. This suggests the existence of a mechanism to inactivate the active form of ATGL, possibly through posttranslational modification of the protein.


Journal of Animal Science | 2011

Cloning of comparative gene identification-58 gene in avian species and investigation of its developmental and nutritional regulation in chicken adipose tissue

J. Serr; Yeunsu Suh; Kichoon Lee

Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis in chicken adipose tissue. Its regulation is not fully understood. Recent studies suggest ATGL may be regulated by physical protein-protein interactions. Comparative gene identification 58 (CGI-58) has been identified as an activator of ATGL in mice. The purpose of the current study was to clone and sequence the CGI-58 gene in avian species and to investigate its regulation during development, fasting, and refeeding. Here, we report the cloning and sequencing of the complete coding sequence of CGI-58 and the deduced AA sequences for the domestic chicken, turkey, and Coturnix quail. The CGI-58 protein is a 343-AA protein in the chicken and quail, and a 344-AA protein in the turkey. Sequence comparisons with the human and mouse show that the CGI-58 gene is highly conserved among avian and mammalian species, with complete identities at the predicted lipid-binding site. Cell fractionation of chicken fat cells and stromal-vascular cells revealed that CGI-58 is expressed primarily in mature adipocytes (P < 0.01). When compared in multiple organs and tissues, avian CGI-58 is expressed predominantly in the adipose tissue (P < 0.001), similar to ATGL. To understand CGI-58 expression during adipose tissue development, its mRNA expression was measured along with ATGL and stearoyl CoA desaturase (SCD-1) mRNA, an adipogenic marker, in embryos and adults. Messenger RNA expression of CGI-58 increased (P < 0.05) immediately after hatching, concurrent with peak ATGL expression. It is interesting that CGI-58 remained somewhat increased at posthatch d 11 and 33 as SCD-1 mRNA expression increased (P < 0.05). To evaluate the response of CGI-58 to nutritional status, chickens and quail were fasted for 24 h and subsequently refed. After the fasting period, CGI-58 mRNA was induced (P < 0.05) for both chickens and quail and was returned to control levels upon refeeding. The ATGL mRNA responded similarly, increasing dramatically after fasting and quickly decreasing with refeeding. The direct relationship between CGI-58 and ATGL mRNA expression indicates a role for CGI-58 in activating ATGL-mediated lipolysis in avian species.


PLOS ONE | 2013

Identification of Novel Tissue-Specific Genes by Analysis of Microarray Databases: A Human and Mouse Model

Yan Song; Jinsoo Ahn; Yeunsu Suh; Michael Davis; Kichoon Lee

Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved.


Journal of Animal Science | 2012

Alternative splicing and developmental and hormonal regulation of porcine comparative gene identification-58 (CGI-58) mRNA.

Xiang Li; Yeunsu Suh; Eunsoo Kim; S. J. Moeller; Kichoon Lee

The process of lipolysis is essential for regulating the catabolism of cellular fat stores. Therefore, knowledge of lipolysis contributes to improving porcine production, such as reducing back fat, enhancing lean meat, and controlling marbling. Comparative gene identification-58 (CGI-58) plays an important role in the multi-enzyme-mediated process of lipolysis. It was identified as the co-activator of adipose triglyceride lipase (ATGL), which performs the first step in breaking down triacylglycerol and generating diacylglycerol and NEFA. We cloned and sequenced the CGI-58 cDNA and deduced the AA sequences in 3 breeds of swine (Duroc, Berkshire, and Landrace). Homologies were found with the human, mouse, and chicken for the lipid droplet binding domain, the α/β hydrolase domain, and the lysophosphatidic acid acyltransferase (LPAAT) domain, which demonstrates conservation of CGI-58 across species. An alternatively spliced isoform with an exon 3 deletion was identified. Interestingly, this unique isoform contains the lipid droplet-binding domain but lacks the LPAAT domain due to an open reading frame (ORF) shift that creates a premature stop codon. Furthermore, porcine CGI-58 is expressed in multiple organs and tissues but is most predominant in adipose tissue. Porcine adipose and stromal-vascular (SV) cell fractionation reveals that CGI-58 and ATGL are highly expressed (P < 0.01) in mature adipocytes. The expressions of both CGI-58 and ATGL mRNA were found to increase (P < 0.05) at d 6 of SV cell culture, confirming their upregulation during adipogenesis and differentiation. Also, the results from in vitro cell culture showed that insulin decreased (P < 0.05) the expressions of both CGI-58 and ATGL in a dose-dependent manner. Overall, these results report the cDNA and AA sequences of porcine CGI-58 with identification of its unique alternatively spliced variant. The results of the study also reveal the developmental and hormonal regulation of porcine CGI-58 gene, which contributes to the understanding of the role of CGI-58 in lipid metabolism. These findings suggest that CGI-58 may be a new target for enhancing the quality of pork products as well as offering the potential of CGI-58 for human obesity treatment.


Poultry Science | 2014

Developmental regulation of adipose tissue growth through hyperplasia and hypertrophy in the embryonic Leghorn and broiler

Paula Chen; Yeunsu Suh; Young Min Choi; Sangsu Shin; Kichoon Lee

The United States is a world leader in poultry production, which is the reason why achieving better performance and muscle growth each year is a necessity. Reducing accretion of adipose tissue is another important factor for poultry producers because this allows more nutrients to be directed toward muscle growth, but the effect of embryonic adipose growth on posthatch development has not been fully understood. The purpose of this study was to investigate the total DNA mass, morphological characteristics, differentiation markers, and triglyceride breakdown factors of embryonic adipose tissue, and their relation to hyperplastic and hypertrophic growth within layers (Leghorn) and meat-type chickens (broilers). After embryonic day (E) 12, broiler weight was significantly higher than Leghorn, and this trend continued throughout the rest of incubation and posthatch (P < 0.05). Neck and leg fat pad weights between the 2 breeds did not differ at most of the time points. A remarkable increase in total DNA mass was observed between E12 and E14 in both Leghorn and broilers (P < 0.05), indicating a high potential for hyperplastic growth during this time. Histological analysis revealed clusters of preadipocytes at E12; however, the majority of these cells differentiated by E14 and continued to grow until the time of hatch. The adipocyte sizes between both breeds did not generally differ, even though broilers are known to have larger adipocytes posthatch. Fatty acid-binding protein 4 expression levels in Leghorn and broilers continued to rise with each time point, which paralleled the expansion of mature adipocytes. Adipose triglyceride lipase was highly expressed at E20 and d 1 posthatch to mobilize triglyceride degradation for energy during hatching. Thus, embryonic chicken adipose tissue was found to develop by hyperplastic mechanisms followed by hypertrophy. At embryonic stages and early posthatch, layer- and meat-type chicken adipose growth does not differ, which suggests breed differences occur posthatch.


FEBS Letters | 2014

Membrane-bound delta-like 1 homolog (Dlk1) promotes while soluble Dlk1 inhibits myogenesis in C2C12 cells

Sangsu Shin; Yeunsu Suh; H. N. Zerby; Kichoon Lee

Delta‐like 1 homolog (Dlk1) is important in myogenesis. However, the roles of different Dlk1 isoforms have not been investigated. In C2C12 cell lines producing different Dlk1 isoforms, membrane‐bound Dlk1 promoted the hypertrophic phenotype and a higher fusion rate, whereas soluble Dlk1 inhibited myotube formation. Inversed expression patterns of genes related to myogenic differentiation further support these phenotypic changes. In addition, temporal expression and balance between the Dlk1 isoforms have a regulatory role in myogenesis in vivo. Collectively, Dlk1 isoforms have distinctive effects on myogenesis, and its regulation during myogenesis is critical for normal muscle development.


Poultry Science | 2009

The ontogeny of delta-like protein 1 messenger ribonucleic acid expression during muscle development and regeneration: Comparison of broiler and Leghorn chickens

Jonghyun Shin; S. G. Velleman; J. D. Latshaw; Macdonald Wick; Yeunsu Suh; Kichoon Lee

Delta-like protein 1 (DLK1) has been implicated in the muscle hypertrophy observed in DLK1 transgenic mice, callipyge sheep, and mouse paternal uniparental disomy 12 and human paternal uniparental disomy 14 syndromes. The current study was aimed to determine chicken DLK1 (gDLK1) mRNA expression during primary muscle cell differentiation and during muscle regeneration after cold injury and to compare gDLK1 mRNA expression during skeletal muscle development in layers and broilers. In chicken primary muscle cell culture, gDLK1 mRNA expression was significantly increased from 12 to 48 h (P < or = 0.05) when the nascent myotubes were actively formed at d 2 to 3. Myogenin, a late myogenic marker gene, mRNA expression peaked at 36 to 48 h. Myogenic differentiation 1 (MyoD) and paired box gene 7 (Pax7), early myogenic marker genes, mRNA expression gradually decreased during myogenic differentiation. During muscle regeneration, the expression of MyoD and Pax7 peaked at d 2 (P < or = 0.05), and myogenin mRNA expression peaked at d 4 (P < or = 0.05). The induction of gDLK1 gene appeared between d 7 to 10 postinjury (P < or = 0.05) when myotubes were actively formed as also demonstrated in histological sections. The expression of gDLK1 was slowly downregulated to the control levels at d 14 when the damaged muscle appeared nearly healed. These data suggest that gDLK1 may be involved in the late myogenic stages of primary muscle cell differentiation and muscle regeneration. The gDLK1 mRNA in the muscle tissues was very abundant at embryonic ages but decreased after hatching in both broiler and layer chickens. Compared with layers, broiler muscle at embryonic d 13 had a 3-fold greater expression of DLK1 (P < or = 0.01). In addition, the gDLK1 mRNA expression at d 1, 11, and 33 post-hatch was significantly higher in broilers than layers (P < or = 0.05). Therefore, the relatively greater expression of the gDLK1 gene in muscles of broilers compared with layers suggests that gDLK1 may serve as a new selection marker for high muscle growth in chickens. These findings may provide new insight into chicken muscle development and regeneration.


PLOS ONE | 2015

Identification of the Avian RBP7 Gene as a New Adipose-Specific Gene and RBP7 Promoter-Driven GFP Expression in Adipose Tissue of Transgenic Quail

Jinsoo Ahn; Sangsu Shin; Yeunsu Suh; Ju Yeon Park; Seongsoo Hwang; Kichoon Lee

The discovery of an increasing number of new adipose-specific genes has significantly contributed to our understanding of adipose tissue biology and the etiology of obesity and its related diseases. In the present study, comparison of gene expression profiles among various tissues was performed by analysis of chicken microarray data, leading to identification of RBP7 as a novel adipose-specific gene in chicken. Adipose-specific expression of RBP7 in the avian species was further confirmed at the protein and mRNA levels. Examination of the transcription factor binding sites within the chicken RBP7 promoter by Matinspector software revealed potential binding sites for adipogenic transcription factors. This led to the hypothesis that the RBP7 promoter can be utilized to overexpress a transgene in adipose tissue in order to further investigate the function of a transgene in adipose tissue. Several lines of transgenic quail containing a green fluorescent protein (GFP) gene under the control of the RBP7 promoter were generated using lentivirus-mediated gene transfer. The GFP expression in transgenic quail was specific to adipose tissue and increased after adipocyte differentiation. This expression pattern was consistent with endogenous RBP7 expression, suggesting the RBP7 promoter is sufficient to overexpress a gene of interest in adipose tissue at later developmental stages. These findings will lead to the establishment of a novel RBP7 promoter cassette which can be utilized for overexpressing genes of interest in adipose tissue in vivo to study the function of genes in adipose tissue development and lipid metabolism.

Collaboration


Dive into the Yeunsu Suh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seongsoo Hwang

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

J. Serr

Ohio State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge