Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sangwon Suh is active.

Publication


Featured researches published by Sangwon Suh.


Journal of Environmental Management | 2009

Recent developments in Life Cycle Assessment.

Göran Finnveden; Michael Zwicky Hauschild; Tomas Ekvall; Jeroen B. Guinée; Reinout Heijungs; Stefanie Hellweg; Annette Koehler; David Pennington; Sangwon Suh

Life Cycle Assessment is a tool to assess the environmental impacts and resources used throughout a products life cycle, i.e., from raw material acquisition, via production and use phases, to waste management. The methodological development in LCA has been strong, and LCA is broadly applied in practice. The aim of this paper is to provide a review of recent developments of LCA methods. The focus is on some areas where there has been an intense methodological development during the last years. We also highlight some of the emerging issues. In relation to the Goal and Scope definition we especially discuss the distinction between attributional and consequential LCA. For the Inventory Analysis, this distinction is relevant when discussing system boundaries, data collection, and allocation. Also highlighted are developments concerning databases and Input-Output and hybrid LCA. In the sections on Life Cycle Impact Assessment we discuss the characteristics of the modelling as well as some recent developments for specific impact categories and weighting. In relation to the Interpretation the focus is on uncertainty analysis. Finally, we discuss recent developments in relation to some of the strengths and weaknesses of LCA.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The material footprint of nations

Thomas Wiedmann; Heinz Schandl; Manfred Lenzen; Daniel Moran; Sangwon Suh; James West; Keiichiro Kanemoto

Significance This original research paper addresses a key issue in sustainability science: How many and which natural resources are needed to sustain modern economies? Simple as it may seem, this question is far from trivial to answer and has indeed not been addressed satisfactorily in the scholarly literature. We use the most comprehensive and most highly resolved economic input–output framework of the world economy together with a detailed database of global material flows to calculate the full material requirements of all countries covering a period of two decades. Called the “material footprint,” this indicator provides a consumption perspective of resource use and new insights into the actual resource productivity of nations. Metrics on resource productivity currently used by governments suggest that some developed countries have increased the use of natural resources at a slower rate than economic growth (relative decoupling) or have even managed to use fewer resources over time (absolute decoupling). Using the material footprint (MF), a consumption-based indicator of resource use, we find the contrary: Achievements in decoupling in advanced economies are smaller than reported or even nonexistent. We present a time series analysis of the MF of 186 countries and identify material flows associated with global production and consumption networks in unprecedented specificity. By calculating raw material equivalents of international trade, we demonstrate that countries’ use of nondomestic resources is, on average, about threefold larger than the physical quantity of traded goods. As wealth grows, countries tend to reduce their domestic portion of materials extraction through international trade, whereas the overall mass of material consumption generally increases. With every 10% increase in gross domestic product, the average national MF increases by 6%. Our findings call into question the sole use of current resource productivity indicators in policy making and suggest the necessity of an additional focus on consumption-based accounting for natural resource use.


Economic Systems Research | 2009

INPUT–OUTPUT ANALYSIS AND CARBON FOOTPRINTING: AN OVERVIEW OF APPLICATIONS

Jan Minx; Thomas Wiedmann; Richard Wood; Glen P. Peters; Manfred Lenzen; Anne Owen; Kate Scott; John Barrett; Klaus Hubacek; Giovanni Baiocchi; A. Paul; Elena Dawkins; J. Briggs; Dabo Guan; Sangwon Suh; Frank Ackerman

This article provides an overview of how generalised multi-regional input–output models can be used for carbon footprint applications. We focus on the relevance and suitability of such evidence to inform decision making. Such an overview is currently missing. Drawing on UK results, we cover carbon footprint applications in seven areas: national emissions inventories and trade, emission drivers, economic sectors, supply chains, organisations, household consumption and lifestyles as well as sub-national emission inventories. The article highlights the multiple uses of generalised multi-regional input–output models for carbon footprinting and concludes by highlighting important avenues for future research.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies

Edgar G. Hertwich; Thomas Gibon; Evert A. Bouman; Anders Arvesen; Sangwon Suh; Garvin Heath; Joseph D. Bergesen; Andrea Ramírez; Mabel Vega; Lei Shi

Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies. Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the worlds electricity needs in 2050.


Gcb Bioenergy | 2015

Bioenergy and climate change mitigation: an assessment

Felix Creutzig; N. H. Ravindranath; Göran Berndes; Simon Bolwig; Ryan M. Bright; Francesco Cherubini; Helena L. Chum; Esteve Corbera; Mark A. Delucchi; André Faaij; Joseph Fargione; Helmut Haberl; Garvin Heath; Oswaldo Lucon; Richard J. Plevin; Alexander Popp; Carmenza Robledo-Abad; Steven K. Rose; Pete Smith; Anders Hammer Strømman; Sangwon Suh; Omar Masera

Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation: Land‐use and energy experts, land‐use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life‐cycle assessment experts. We summarize technological options, outline the state‐of‐the‐art knowledge on various climate effects, provide an update on estimates of technical resource potential and comprehensively identify sustainability effects. Cellulosic feedstocks, increased end‐use efficiency, improved land carbon‐stock management and residue use, and, when fully developed, BECCS appear as the most promising options, depending on development costs, implementation, learning, and risk management. Combined heat and power, efficient biomass cookstoves and small‐scale power generation for rural areas can help to promote energy access and sustainable development, along with reduced emissions. We estimate the sustainable technical potential as up to 100 EJ: high agreement; 100–300 EJ: medium agreement; above 300 EJ: low agreement. Stabilization scenarios indicate that bioenergy may supply from 10 to 245 EJ yr−1 to global primary energy supply by 2050. Models indicate that, if technological and governance preconditions are met, large‐scale deployment (>200 EJ), together with BECCS, could help to keep global warming below 2° degrees of preindustrial levels; but such high deployment of land‐intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration of bioenergy systems into agriculture and forest landscapes can improve land and water use efficiency and help address concerns about environmental impacts. We conclude that the high variability in pathways, uncertainties in technological development and ambiguity in political decision render forecasts on deployment levels and climate effects very difficult. However, uncertainty about projections should not preclude pursuing beneficial bioenergy options.


Economic Systems Research | 2011

COMPARISON OF BOTTOM-UP AND TOP-DOWN APPROACHES TO CALCULATING THE WATER FOOTPRINTS OF NATIONS

Kuishuang Feng; Ashok Chapagain; Sangwon Suh; Stephan Pfister; Klaus Hubacek

The water footprint has been introduced as a potential sustainability indicator for human-induced water consumption, and has frequently been studied at local, national and international scales during the last decade. While water footprints are sometimes understood as a measure that includes environmental impact assessment, the water footprint as used in this paper refers to volumes of water consumed, without including weighting procedures to allow for the assessment of impacts. Two types of approaches have been applied to calculate the water footprint in the literature: bottom-up and top-down approaches. This study compares and discusses advantages and limitations of the water footprint of nations based on two input–output top-down approaches (Water Embodied in Bilateral Trade (WEBT) and Multi-regional Input–Output Analysis (MRIO)) and of the existing national water footprint accounts from the literature based on the bottom-up approach. The differences in the bottom-up and WEBT approaches are caused by inter-sectoral cut-off, because bottom-up approaches do not consider the entire industrial supply chains, while the WEBT method covers the water footprint by tracing the whole domestic supply chain of each country. The differences in the WEBT and MRIO approaches are due to an inter-regional cut-off effect, as the WEBT approach only traces domestic supply chains whereas the MRIO approach traces entire global supply chains. We found that both bottom-up and top-down approaches are heavily dependent on the quality of existing datasets, and differ substantially. The total water footprints of nations based on different approaches vary by up to 48%, and this variation is even larger at the sector level.


Environmental Science & Technology | 2011

Application of Hybrid Life Cycle Approaches to Emerging Energy Technologies – The Case of Wind Power in the UK

Thomas Wiedmann; Sangwon Suh; Kuishuang Feng; Manfred Lenzen; Adolf Acquaye; Kate Scott; John Barrett

Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models, however, have ignored the fact that upstream emissions are associated with any energy technology. In this work we explore methodological options for hybrid life cycle assessment (hybrid LCA) to account for the indirect greenhouse gas (GHG) emissions of energy technologies using wind power generation in the UK as a case study. We develop and compare two different approaches using a multiregion input-output modeling framework - Input-Output-based Hybrid LCA and Integrated Hybrid LCA. The latter utilizes the full-sized Ecoinvent process database. We discuss significance and reliability of the results and suggest ways to improve the accuracy of the calculations. The comparison of hybrid LCA methodologies provides valuable insight into the availability and robustness of approaches for informing energy and environmental policy.


Journal of Industrial Ecology | 2004

Three Strategies to Overcome the Limitations of Life‐Cycle Assessment

Helias A. De Udo Haes; Reinout Heijungs; Sangwon Suh; Gjalt Huppes

Summary Many research efforts aim at an extension of life-cycle assessment (LCA) in order to increase its spatial or temporal detail or to enlarge its scope. This is an important contribution to industrial ecology as a scientific discipline, but from the application viewpoint other options are available to obtain more detailed information, or to obtain information over a broader range of impacts in a life-cycle perspective. This article discusses three different strategies to reach these aims: (1) extension of LCA—one consistent model; (2) use of a toolbox—separate models used in combination; and (3) hybrid analysis—combination of models with data flows between them. Extension of LCA offers the most consistent solution. Developments in LCA are moving toward greater spatial detail and temporal resolution and the inclusion of social issues. Creating a supertool with too many data and resource requirements is, however, a risk. Moreover, a number of social issues are not easily modeled in relation to a functional unit. The development of a toolbox offers the most flexibility regarding spatial and temporal information and regarding the inclusion of other types of impacts. The rigid structure of LCA no longer sets limits; every aspect can be dealt with according to the logic of the relevant tool. The results lack consistency, however, preventing further formal integration. The third strategy, hybrid analysis, takes up an intermediate position between the other two. This strategy is more flexible than extension of LCA and more consistent than a toolbox. Hybrid analysis thus has the potential to combine the strong points of the other two strategies. It offers an interesting path for further discovery, broader than the already well-known combination of process-LCA and input-output-LCA. We present a number of examples of hybrid analysis to illustrate the potentials of this strategy. Developments in the field of a toolbox or of hybrid analysis may become fully consistent with LCA, and then in fact become part of the first solution, extension of LCA.


International Journal of Life Cycle Assessment | 2002

Missing inventory estimation tool using extended input-output analysis

Sangwon Suh; Gjalt Huppes

Intention, Goal, Scope, BackgroundInput-Output Analysis (IOA) has recently been introduced to Life Cycle Assessment (LCA). In applying IOA to LCA studies, however, it is important to note that there are both advantages and disadvantages.ObjectivesThis paper aims to provide a better understanding of the advantages and disadvantages of adopting IOA in LCA, and introduces the methodology and principles of the Missing Inventory Estimation Tool (MIET) as one of the approaches to combine the strengths of process-specific LCA and IOA. Additionairy, we try to identify a number of possible errors in the use of IOA for LCA purposes, due to confusion between industry output and commodity, consumer’s price and producer’s price.MethodMIET utilises the 1996 US input-output table and various environmental statistics. It is based on an explicit distinction between commodity and industry output.Results and DiscussionMIET is a self-contained, publicly available database which can be applied directly in LCA studies to estimate missing processes.ConclusionBy adopting MILT results in existing, process-based, life-cycle inventory (LCI), LCA practitioners can fully utilise the process-specific information while expanding the system boundary.Recommendations and OutlookMIET will be continuously updated to reflect both methodological developments and newly available data sources. For supporting information sec http:// wwwJeidenuniv.nl/cml/ssp/softwarc/miet.


Journal of Cleaner Production | 2003

Normalisation figures for environmental life-cycle assessment: The Netherlands (1997/1998), Western Europe (1995) and the world (1990 and 1995)

Mark A. J. Huijbregts; L. Breedveld; Gjalt Huppes; A. de Koning; L. van Oers; Sangwon Suh

Abstract Normalisation provides a measure of the relative contribution from a product system to one or more environmental problems. Total yearly emissions for a reference year in a reference region are normally used to calculate normalisation figures. This paper provides up-to-date normalisation figures for the Netherlands in 1997/1998, Western Europe in 1995 and the world in 1990 and 1995. Impact categories considered were depletion of abiotic resources, land competition, global warming, stratospheric ozone depletion, acidification, eutrophication, photochemical ozone formation, radiation and toxicity. In all cases, a limited set of emissions or extractions are dominant contributors to the normalisation scores. Although much effort was spent on collecting emissions data and characterisation factors, particularly normalisation scores for radiation and toxicity remain considerably uncertain.

Collaboration


Dive into the Sangwon Suh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keisuke Nansai

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Yang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge