Sanja Curcic
Medical University of Graz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sanja Curcic.
Journal of Lipid Research | 2012
Michael Holzer; Peter Wolf; Sanja Curcic; Ruth Birner-Gruenberger; Wolfgang Weger; Martin Inzinger; Dalia El-Gamal; Christian Wadsack; Akos Heinemann; Gunther Marsche
Psoriasis, a chronic inflammatory skin disease, has been linked to increased myocardial infarction and stroke. Functional impairment of HDL may contribute to the excess cardiovascular mortality of psoriatic patients. However, data available regarding the impact of psoriasis on HDL composition and function are limited. HDL from psoriasis patients and healthy controls was isolated by ultracentrifugation and shotgun proteomics, and biochemical methods were used to monitor changed HDL composition. We observed a significant reduction in apoA-I levels of HDL from psoriatic patients, whereas levels of apoA-II and proteins involved in acute-phase response, immune response, and endopeptidase/protease inhibition were increased. Psoriatic HDL contained reduced phospholipid and cholesterol. With regard to function, these compositional alterations impaired the ability of psoriatic HDL to promote cholesterol efflux from macrophages. Importantly, HDL-cholesterol efflux capability negatively correlated with psoriasis area and severity index. We observed that control HDL, as well as psoriatic HDL, inhibited dihydrorhodamine (DHR) oxidation to a similar extent, suggesting that the anti-oxidative activity of psoriatic HDL is not significantly altered. Our observations suggest that the compositional alterations observed in psoriatic HDL reflect a shift to a pro-inflammatory profile that impairs cholesterol efflux capacity of HDL and may provide a link between psoriasis and cardiovascular disease.
Antioxidants & Redox Signaling | 2012
Michael Holzer; Klaus Zangger; Dalia El-Gamal; Veronika Binder; Sanja Curcic; Viktoria Konya; Rufina Schuligoi; Akos Heinemann; Gunther Marsche
AIMS Protein carbamylation through cyanate is considered as playing a causal role in promoting cardiovascular disease. We recently observed that the phagocyte protein myeloperoxidase (MPO) specifically induces high-density lipoprotein (HDL) carbamylation, rather than chlorination, in human atherosclerotic lesions, raising the possibility that MPO-derived chlorinating species are involved in cyanate formation. RESULTS Here, we show that MPO-derived chlorinating species rapidly decompose the plasma components thiocyanate (SCN) and urea, thereby promoting (lipo)protein carbamylation. Strikingly, the presence of physiologic concentrations of SCN completely prevented MPO-induced 3-chlorotyrosine formation in HDL. SCN scavenged a 2.5-fold molar excess of hypochlorous acid, promoting HDL carbamylation, but not chlorination. Cyanate significantly impaired (i) HDLs ability to activate lecithin-cholesterol acyltransferase; (ii) the activity of paraoxonase, a major HDL-associated anti-inflammatory enzyme; and (iii) the antioxidative activity of HDL. INNOVATION Here, we report that MPO-derived chlorinating species preferentially induce protein carbamylation-rather than chlorination-in the presence of physiologically relevant SCN concentrations. The carbamylation of HDL results in the loss of its anti-inflammatory and antioxidative activities. CONCLUSION MPO-mediated decomposition of SCN and/or urea might be a relevant mechanism for generating dysfunctional HDL in human disease.
Journal of Investigative Dermatology | 2014
Michael Holzer; Peter Wolf; Martin Inzinger; Markus Trieb; Sanja Curcic; Lisa Pasterk; Wolfgang Weger; Akos Heinemann; Gunther Marsche
Psoriasis is a chronic inflammatory disorder associated with increased cardiovascular mortality. Psoriasis affects high-density lipoprotein (HDL) composition, generating dysfunctional HDL particles. However, data regarding the impact of anti-psoriatic therapy on HDL composition and function are not available. HDL was isolated from 15 psoriatic patients at baseline and after effective topical and/or systemic anti-psoriatic therapy and from 15 age- and sex-matched healthy controls. HDL from psoriatic patients showed a significantly impaired capability to mobilize cholesterol from macrophages (6.4 vs. 8.0% [(3)H]cholesterol efflux, P<0.001), low paraoxonase (217 vs. 350 μM(-1) minute(-1) mg(-1) protein, P=0.011) and increased Lp-PLA2 activities (19.9 vs. 12.1 nM(-1) minute(-1) mg(-1) protein, P=0.028). Of particular interest, the anti-psoriatic therapy significantly improved serum lecithin-cholesterol acyltransferase activity and decreased total serum lipolytic activity but did not affect serum levels of HDL-cholesterol. Most importantly, these changes were associated with a significantly improved HDL-cholesterol efflux capability. Our results provide evidence that effective anti-psoriatic therapy recovers HDL composition and function, independent of serum HDL-cholesterol levels, and support to the emerging concept that HDL function may be a better marker of cardiovascular risk than HDL-cholesterol levels.
Journal of The American Society of Nephrology | 2015
Michael Holzer; Gernot Schilcher; Sanja Curcic; Markus Trieb; Senka Ljubojevic; Tatjana Stojakovic; Hubert Scharnagl; Chantal Kopecky; Alexander R. Rosenkranz; Akos Heinemann; Gunther Marsche
Lipid abnormalities may have an effect on clinical outcomes of patients on dialysis. Recent studies have indicated that HDL dysfunction is a hallmark of ESRD. In this study, we compared HDL composition and metrics of HDL functionality in patients undergoing hemodialysis (HD) or peritoneal dialysis (PD) with those in healthy controls. We detected a marked suppression of several metrics of HDL functionality in patients on HD or PD. Compositional analysis revealed that HDL from both dialysis groups shifted toward a more proinflammatory phenotype with profound alterations in the lipid moiety and protein composition. With regard to function, cholesterol efflux and anti-inflammatory and antiapoptotic functions seemed to be more severely suppressed in patients on HD, whereas HDL-associated paraoxonase activity was lowest in patients on PD. Quantification of enzyme activities involved in HDL metabolism suggested that HDL particle maturation and remodeling are altered in patients on HD or PD. In summary, our study provides mechanistic insights into the formation of dysfunctional HDL in patients with ESRD who are on HD or PD.
Biochimica et Biophysica Acta | 2016
Markus Trieb; A Horvath; Ruth Birner-Gruenberger; Spindelboeck W; Stadlbauer; Taschler U; Sanja Curcic; Rudolf E. Stauber; Michael Holzer; Lisa Pasterk; Akos Heinemann; Gunther Marsche
High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk.
Biochimica et Biophysica Acta | 2015
Sanja Curcic; Michael Holzer; Robert Frei; Lisa Pasterk; Rudolf Schicho; Akos Heinemann; Gunther Marsche
Secretory phospholipase A2 (sPLA2) generates bioactive lysophospholipids implicated in acute and chronic inflammation, but the pathophysiologic role of sPLA2 is poorly understood. Given that high-density lipoprotein (HDL) is the major substrate for sPLA2 in plasma, we investigated the effects of sPLA2-mediated modification of HDL (sPLA2-HDL) on neutrophil function, an essential arm of the innate immune response and atherosclerosis. Treatment of neutrophils with sPLA2-HDL rapidly prevented agonist-induced neutrophil activation, including shape change, neutrophil extracellular trap formation, CD11b activation, adhesion under flow and migration of neutrophils. The cholesterol-mobilizing activity of sPLA2-HDL was markedly increased when compared to native HDL, promoting a significant reduction of cholesterol-rich signaling microdomains integral to cellular signaling pathways. Moreover, sPLA2-HDL effectively suppressed agonist-induced rise in intracellular Ca²⁺ levels. Native HDL showed no significant effects and removing lysophospholipids from sPLA2-HDL abolished all anti-inflammatory activities. Overall, our studies suggest that the increased cholesterol-mobilizing activity of sPLA2-HDL and suppression of rise in intracellular Ca²⁺ levels are likely mechanism that counteracts agonist-induced activation of neutrophils. These counterintuitive findings imply that neutrophil trafficking and effector responses are altered by sPLA2-HDL during inflammatory conditions.
Scientific Reports | 2016
Michael Holzer; Sabine Kern; Ruth Birner-Grünberger; Sanja Curcic; Akos Heinemann; Gunther Marsche
Proteomics have extended the list of high-density lipoprotein (HDL) associated proteins to about 90. One of the major issues of global protein characterization is establishing specificity of association as opposed to contamination, a fact which has never been addressed for isolated HDL. We have developed a refined purification strategy to isolate HDL by density, followed by purification by size to generate “highly purified” fractions of HDL2/3, which allow the reliable quantification of the HDL proteome for biomarker discovery. Mass spectrometry analysis revealed that the proteome of HDL2/3 is composed of 10–16 different proteins, which is in striking contrast to previous reports. Importantly, proteomic analysis revealed that many proteins which have recently been described to be associated with HDL, including α-1-antitrypsin, α-2-HS-glycoprotein, serotransferrin, apolipoprotein A-IV and others, are not associated with HDL2/3 and are exclusively found in a different molecular weight fraction containing human serum albumin, lipid-poor apolipoprotein A-I and other proteins. Interestingly, proteins found in this lower molecular weight fraction commonly share lipid-binding properties and enrichment of serum with free fatty acids/lysophophatidylcholine led to a significant increase in co-isolation of lipid-binding proteins such as albumin and α-1-antitrypsin. We propose that this refined method might become a standard in proteomic assessment of HDL2/3 making data from clinical cohorts more comparable and reproducible.
Scientific Reports | 2016
Lisa Pasterk; Sandra Lemesch; Bettina Leber; Markus Trieb; Sanja Curcic; Vanessa Stadlbauer; Rufina Schuligoi; Rudolf Schicho; Akos Heinemann; Gunther Marsche
Plasma advanced oxidation protein products (AOPPs), a class of pro-inflammatory pathogenic mediators, accumulate in subjects with chronic kidney disease. Whether AOPPs contribute to coagulation abnormalities, which are frequently seen in uremic patients, is unknown. Here we report that AOPPs activate platelets via a CD36-mediated signaling pathway. Activation of signaling pathways by AOPP-platelet interaction resulted in the expression of several platelet activation markers and rapidly induced the expression of CD40 ligand, triggering platelet adhesion to endothelial cells and promoting endothelial tissue factor expression. AOPPs and serum tissue factor levels were considerably increased in end stage renal disease patients on hemodialysis and a significant correlation of AOPPs and serum tissue factor was found. Interestingly, serum levels of AOPPs and tissue factor were substantially lower in stable kidney transplant patients when compared with hemodialysis patients. Given that CD36 is known to transduce the effects of oxidized lipids into platelet hyperactivity, our findings reveal previously unknown pro-thrombotic activities of oxidized plasma albumin via a CD36 dependent pathway.
Scientific Reports | 2017
Sanja Curcic; Michael Holzer; Lisa Pasterk; Eva Knuplez; Thomas O. Eichmann; Saša Frank; Robert Zimmermann; Rudolf Schicho; Akos Heinemann; Gunther Marsche
Levels of secretory phospholipases A2 (sPLA2) highly increase under acute and chronic inflammatory conditions. sPLA2 is mainly associated with high-density lipoproteins (HDL) and generates bioactive lysophospholipids implicated in acute and chronic inflammatory processes. Unexpectedly, pharmacological inhibition of sPLA2 in patients with acute coronary syndrome was associated with an increased risk of myocardial infarction and stroke. Given that platelets are key players in thrombosis and inflammation, we hypothesized that sPLA2-induced hydrolysis of HDL-associated phospholipids (sPLA2-HDL) generates modified HDL particles that affect platelet function. We observed that sPLA2-HDL potently and rapidly inhibited platelet aggregation induced by several agonists, P-selectin expression, GPIIb/IIIa activation and superoxide production, whereas native HDL showed little effects. sPLA2-HDL suppressed the agonist-induced rise of intracellular Ca2+ levels and phosphorylation of Akt and ERK1/2, which trigger key steps in promoting platelet activation. Importantly, sPLA2 in the absence of HDL showed no effects, whereas enrichment of HDL with lysophosphatidylcholines containing saturated fatty acids (the main sPLA2 products) mimicked sPLA2-HDL activities. Our findings suggest that sPLA2 generates lysophosphatidylcholine-enriched HDL particles that modulate platelet function under inflammatory conditions.
Scientific Reports | 2017
Carolin Schliefsteiner; Birgit Hirschmugl; Susanne Kopp; Sanja Curcic; Eva Bernhart; Gunther Marsche; U Lang; Gernot Desoye; Christian Wadsack
Increased Lipoprotein associated phospholipase A2 (LpPLA2) has been associated with inflammatory pathologies, including Type 2 Diabetes. Studies on LpPLA2 and Gestational Diabetes Mellitus (GDM) are rare, and have focused mostly on maternal outcome. In the present study, we investigated whether LpPLA2 activity on foetal lipoproteins is altered by maternal GDM and/or obesity (a major risk factor for GDM), thereby contributing to changes in lipoprotein functionality. We identified HDL as the major carrier of LpPLA2 activity in the foetus, which is in contrast to adults. We observed marked expression of LpPLA2 in placental macrophages (Hofbauer cells; HBCs) and found that LpPLA2 activity in these cells was increased by insulin, leptin, and pro-inflammatory cytokines. These regulators were also increased in plasma of children born from GDM pregnancies. Our results suggest that insulin, leptin, and pro-inflammatory cytokines are positive regulators of LpPLA2 activity in the foeto-placental unit. Of particular interest, functional assays using a specific LpPLA2 inhibitor suggest that high-density lipoprotein (HDL)-associated LpPLA2 exerts anti-oxidative, athero-protective functions on placental endothelium and foetus. Our results therefore raise the possibility that foetal HDL-associated LpPLA2 might act as an anti-inflammatory enzyme improving vascular barrier function.